- ID:
- ivo://CDS.VizieR/J/ApJ/687/1201
- Title:
- SN and LGRB locations in their host galaxies
- Short Name:
- J/ApJ/687/1201
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- When the afterglow fades at the site of a long-duration {gamma}-ray burst (LGRB), Type Ic supernovae (SNe Ic) are the only type of core-collapse supernova observed. Here we examine 504 supernovae with types assigned based on their spectra that are located in nearby (z<0.06) galaxies for which we have constructed surface photometry from the Sloan Digital Sky Survey (SDSS). The distributions of the thermonuclear supernovae (SNe Ia) and some varieties of core-collapse supernovae (SNe II and SNe Ib) follow the galaxy light, but the SNe Ic (like LGRBs) are much more likely to erupt in the brightest regions of their hosts.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/other/PZ/29.2
- Title:
- SN 2008ax UBVRI light curves
- Short Name:
- J/other/PZ/29.2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- CCD UBVRI photometry covering about 320 days is presented for the type IIb SN 2008ax. Its photometric behavior is typical of core-collapse SNe with low amount of hydrogen. The main photometric parameters are derived and a comparison with SNe of similar types is reported. Preliminary modeling is carried out, and the results are compared to the observed light curves. The main parameters of the hydrodynamical models are close to those used for SN IIb 1993J.
- ID:
- ivo://CDS.VizieR/J/A+A/652/A136
- Title:
- SN 2020bqj ligth curves
- Short Name:
- J/A+A/652/A136
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Type Ibn supernovae are a rare class of stripped envelope supernovae interacting with a helium-rich CSM. The majority of the SNe Ibn reported display a surprising homogeneity in their fast lightcurves and starforming hosts. We present the discovery and study of SN 2020bqj (ZTF20aalrqbu), a SN Ibn with a long-duration peak plateau lasting 40 days and hosted by a faint low-mass galaxy. We aim to explain its peculiar properties using an extensive data set. We compare the evolution of SN 2020bqj with SNe Ibn from the literature. We fit the bolometric and multi-band lightcurves with different powering mechanism models. The risetime, peak magnitude and spectral features of SN 2020bqj are consistent with those of most SNe Ibn, but the SN is a clear outlier based on its bright, long-lasting peak plateau and low host mass. We show through modeling that the lightcurve can be powered predominantly by shock heating from the interaction of the SN ejecta and a dense CSM. The peculiar Type Ibn SN 2011hw is a close analog to SN 2020bqj, suggesting a similar progenitor and CSM scenario. In this scenario a very massive progenitor star in the transitional phase between a luminous blue variable and a compact Wolf-Rayet star undergoes core-collapse, embedded in a dense helium-rich CSM with an elevated opacity compared to normal SNe Ibn, due to the presence of residual hydrogen. This scenario is consistent with the observed properties of SN 2020bqj and the modeling results. SN 2020bqj is a compelling example of a transitional SN Ibn/IIn based on not only its spectral features, but also its lightcurve, host galaxy properties and the inferred progenitor properties. The strong similarity with SN 2011hw suggests this subclass may be the result of a progenitor in a stellar evolution phase that is distinct from those of progenitors of regular SNe Ibn.
- ID:
- ivo://CDS.VizieR/J/ApJ/908/232
- Title:
- SN 2020bvc optical and near-IR spectra
- Short Name:
- J/ApJ/908/232
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- We present near-IR (NIR) and optical observations of the Type Ic supernova (SN Ic) SN 2020oi in the galaxy M100 and the broad-lined SN Ic SN 2020bvc in UGC 9379, using Gemini, Las Cumbres Observatory, Southern Astrophysical Telescope, and other ground-based telescopes. The NIR spectrum of SN 2020oi at day 63 since the explosion shows strong CO emissions and a rising K-band continuum, which is the first unambiguous dust detection from an SN Ic. Non-LTE CO modeling shows that CO is still optically thick and that the lower limit to the CO mass is 10^-3^M_{sun}_. The dust temperature is 810 K, and the dust mass is ~10^-5^M_{sun}_. We explore the possibilities that the dust is freshly formed in the ejecta, heated dust in the preexisting circumstellar medium, and an infrared echo. The light curves of SN 2020oi are consistent with a STELLA model with canonical explosion energy, 0.07M_{sun}_ Ni mass, and 0.7M_{sun}_ ejecta mass. A model of high explosion energy of 10^52^erg, 0.4M_{sun}_ Ni mass, and 6.5M_{sun}_ ejecta mass with the circumstellar matter reproduces the double-peaked light curves of SN 2020bvc. We observe temporal changes of absorption features of the IR CaII triplet, SI at 1.043{mu}m, and FeII at 5169{AA}. The blueshifted lines indicate high velocities, up to 60000km/s for SN 2020bvc and 20000km/s for SN 2020oi, and the expansion velocity rapidly declines before the optical maximum. We present modeled spectral signatures and diagnostics of CO and SiO molecular bands between 1.4 and 10{mu}m.
- ID:
- ivo://CDS.VizieR/J/MNRAS/394/2266
- Title:
- SN 2005cs one-year photometry
- Short Name:
- J/MNRAS/394/2266
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of the one-year long observational campaign of the type II plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool galaxy). This extensive data set makes SN 2005cs the best observed low-luminosity, ^56^Ni-poor type II plateau event so far and one of the best core-collapse supernovae ever.
- ID:
- ivo://CDS.VizieR/J/A+A/655/A90
- Title:
- SN 2020cxd multi-photometry
- Short Name:
- J/A+A/655/A90
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We present observations and analysis of SN 2020cxd, a low-luminosity (LL), long-lived Type IIP supernova (SN). This object was a clear outlier in the magnitude-limited SN sample recently presented by the Zwicky Transient Facility (ZTF) Bright Transient Survey. We demonstrate that SN 2020cxd is an additional member of the group of LL SNe, and discuss the rarity of LL SNe in the context of the ZTF survey, and how further studies of these faintest members of the core-collapse (CC) SN family might help understand the underlying initial mass function for stars that explode. We present optical light curves (LCs) from the ZTF in the $gri$ bands and several epochs of ultra-violet data from the Neil Gehrels Swift Observatory as well as a sequence of optical spectra. We construct colour curves, a bolometric LC, compare ejecta-velocity and black-body temperature evolutions for LL SNe, as well as for typical Type II SNe. Furthermore, we adopt a Monte Carlo code that fits semi-analytic models to the LC of SN 2020cxd, which allows the estimation of physical parameters. Using our late-time nebular spectra, we also compare against SN II spectral synthesis models from the literature to constrain the progenitor properties of SN 2020cxd. The LCs of SN 2020cxd show great similarity with those of LL SNe IIP, in luminosity, timescale and colours. Also the spectral evolution of SN 2020cxd is that of a Type IIP SN. The spectra show prominent and narrow P-Cygni lines, indicating low expansion velocities. This is one of the faintest LL SNe observed, with an absolute plateau magnitude of M_r_=-14.5mag, and also one with the longest plateau lengths, with a duration of 118 days. Finally, the velocities measured from the nebular emission lines are among the lowest ever seen in a SN, with intrinsic Full Width at Half Maximum of 478km/s. The underluminous late-time exponential LC tail indicates that the mass of ^56^Ni ejected during the explosion is much smaller than the average of normal SNe IIP, we estimate M_^56^Ni_=0.003M+{sun+_. The Monte Carlo fitting of the bolometric LC suggests that the progenitor of SN 2020cxd had a radius of R_0_=1.3x10^13^cm, kinetic energy of E_kin_=4.3x10^50^erg, and ejecta mass M_ej_=9.5M_{sun}_. From the bolometric LC, we estimate the total radiated energy E_rad_=1.52x10^48^erg. Using our late-time nebular spectra, we compare against SN II spectral synthesis models to constrain the progenitor Zero-age Main-sequence mass and found it likely to be <~15M_{sun}+. SN 2020cxd is a LL Type IIP SN. The inferred progenitor parameters and the features observed in the nebular spectrum favour a low-energy, Ni-poor, iron CC SN from a low mass ~12M_{sun}_ red supergiant.
- ID:
- ivo://CDS.VizieR/J/MNRAS/410/585
- Title:
- SN 2009dc BVRI light curves
- Short Name:
- J/MNRAS/410/585
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we present and analyse optical photometry and spectra of the extremely luminous and slowly evolving Type Ia supernova (SN Ia) 2009dc, and offer evidence that it is a super-Chandrasekhar mass (SC) SN Ia and thus has a SC white dwarf (WD) progenitor. Optical spectra of SN 2007if, a similar object, are also shown. SN 2009dc had one of the most slowly evolving light curves ever observed for a SN Ia, with a rise time of ~23d and {DELTA}m_15_(B)=0.72mag. We calculate a lower limit to the peak bolometric luminosity of ~2.4x10^43^erg/s, though the actual value is likely almost 40 per cent larger. Optical spectra of SN 2009dc and SN 2007if obtained near maximum brightness exhibit strong CII features (indicative of a significant amount of unburned material), and the post-maximum spectra are dominated by iron-group elements (IGEs). All of our spectra of SN 2009dc and SN 2007if also show low expansion velocities. However, we see no strong evidence in SN 2009dc for a velocity `plateau' near maximum light like the one seen in SN 2007if. The high luminosity and low expansion velocities of SN 2009dc lead us to derive a possible WD progenitor mass of more than 2M_{sun}_ and a 56Ni mass of about 1.4-1.7M_{sun}_.
- ID:
- ivo://CDS.VizieR/J/A+A/562/A17
- Title:
- SN 2011dh - The first 100 days
- Short Name:
- J/A+A/562/A17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with Swift ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten et al. (2012ApJ...757...31B).
- ID:
- ivo://CDS.VizieR/J/A+A/580/A142
- Title:
- SN 2011dh. The first two years
- Short Name:
- J/A+A/580/A142
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present optical and near-infrared (NIR) photometry and spectroscopy as well as modelling of the lightcurves of the Type IIb supernova (SN) 2011dh. Our extensive dataset, for which we present the observations obtained after day 100, spans two years, and complemented with Spitzer mid-infrared (MIR) data, we use it to build an optical-to-MIR bolometric lightcurve between days 3 and 732.
- ID:
- ivo://CDS.VizieR/J/ApJ/778/L19
- Title:
- SN 2011dh (type IIb) 3.6 and 4.5um light curves
- Short Name:
- J/ApJ/778/L19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Spitzer observations at 3.6 and 4.5{mu}m of the supernova SN 2011dh (PTF 11eon) in M51 from 18 days to 625 days after explosion. The mid-infrared emission peaks at 24 days after explosion at a few x10^7^L _{sun}_, and decays more slowly than the visible-light bolometric luminosity. The infrared color temperature cools for the first 90 days and then is constant. Simple numerical models of a thermal echo can qualitatively reproduce the early behavior. At late times, the mid-IR light curve cannot be explained by a simple thermal echo model, suggesting additional dust heating or line emission mechanisms. We also propose that thermal echoes can serve as effective probes to uncover supernovae in heavily obscured environments, and speculate that under the right conditions, integrating the early epoch of the mid-infrared light curve may constrain the total energy in the shock breakout flash.