Although high-resolution spectra of the CN red-system band are considered useful in cometary sciences, e.g., in the study of isotopic ratios of carbon and nitrogen in cometary volatiles, there have been few reports to date due to the lack of high-resolution (R={lambda}/{Delta}{lambda}>20000) spectrographs in the near-infrared region around ~1 {mu}m. Here, we present the high-resolution emission spectrum of the CN red-system band in comet C/2013 R1 (Lovejoy), acquired by the near-infrared high-resolution spectrograph WINERED mounted on the 1.3 m Araki telescope at the Koyama Astronomical Observatory, Kyoto, Japan. We applied our fluorescence excitation models for CN, based on modern spectroscopic studies, to the observed spectrum of comet C/2013 R1 (Lovejoy) to search for CN isotopologues (^13^C^14^N and ^12^C^15^N). We used a CN fluorescence excitation model involving both a "pure" fluorescence excitation model for the outer coma and a "fully collisional" fluorescence excitation model for the inner coma region. Our emission model could reproduce the observed ^12^C^14^N red-system band of comet C/2013 R1 (Lovejoy). The derived mixing ratio between the two excitation models was 0.94(+0.02/-0.03):0.06(+0.03/-0.02), corresponding to the radius of the collision-dominant region of ~800-1600 km from the nucleus. No isotopologues were detected. The observed spectrum is consistent, within error, with previous estimates in comets of ^12^C/^13^C (~90) and ^14^N/^15^N (~150).
We use NEOWISE data from the four-band and three-band cryogenic phases of the Wide-field Infrared Survey Explorer mission to constrain size distributions of the comet populations and debias measurements of the short- and long-period comet (LPC) populations. We find that the fit to the debiased LPC population yields a cumulative size-frequency distribution (SFD) power-law slope ({beta}) of -1.0+/-0.1, while the debiased Jupiter-family comet (JFC) SFD has a steeper slope with {beta}=-2.3+/-0.2. The JFCs in our debiased sample yielded a mean nucleus size of 1.3km in diameter, while the LPCs' mean size is roughly twice as large, 2.1km, yielding mean size ratios (<D_LPC_>/<D_JFC_>) that differ by a factor of 1.6. Over the course of the 8 months of the survey, our results indicate that the number of LPCs passing within 1.5 au are a factor of several higher than previous estimates, while JFCs are within the previous range of estimates of a few thousand down to sizes near 1.3km in diameter. Finally, we also observe evidence for structure in the orbital distribution of LPCs, with an overdensity of comets clustered near 110{deg} inclination and perihelion near 2.9 au that is not attributable to observational bias.