- ID:
- ivo://CDS.VizieR/J/A+A/549/A18
- Title:
- WASP-30 and J1219-39 light & velocity curves
- Short Name:
- J/A+A/549/A18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AcA/68/371
- Title:
- WASP and KELT planet transits
- Short Name:
- J/AcA/68/371
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Theoretical calculations and some indirect observations show that massive exoplanets on tight orbits must decay due to tidal dissipation within their host stars. This orbital evolution could be observationally accessible through precise transit timing over a course of decades. The rate of planetary in-spiraling may not only help us to understand some aspects of evolution of planetary systems, but also can be used as a probe of the stellar internal structure. In this paper we present results of transit timing campaigns organized for a carefully selected sample of the Northern hemisphere hot Jupiter-like planets which were found to be the best candidates for detecting planet-star tidal interactions. Among them, there is the WASP-12 system which is the best candidate for possessing an in-falling giant exoplanet. Our new observations support the scenario of orbital decay of WASP-12 b and allow us to refine its rate. The derived tidal quality parameter of the host star Q'*=(1.82+/-0.32)x10^5^ is in agreement with theoretical predictions for subgiant stars. For the remaining systems - HAT-P-23, KELT-1, KELT-16, WASP-33, and WASP-103 - our transit timing data reveal no deviations from the constant-period models, hence constraints on the individual rates of orbital decay were placed. The tidal quality parameters of host stars in at least four systems - HAT-P-23, KELT-1, WASP-33, and WASP-103 - were found to be greater than the value reported for WASP-12. This is in line with the finding that those hosts are main sequence stars, for which efficiency of tidal dissipation is predicted to be relatively weak.
- ID:
- ivo://CDS.VizieR/J/A+A/599/A3
- Title:
- WASP 127, 136 and 138 RV and light curves
- Short Name:
- J/A+A/599/A3
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report three newly discovered exoplanets from the SuperWASP survey. WASP-127b is a heavily inflated super-Neptune of mass 0.18+/-0.02 M_J_ and radius 1.37+/-0.04 R_J_. This is one of the least massive planets discovered by the WASP project. It orbits a bright host star (Vmag=10.16) of spectral type G5 with a period of 4.17 days. WASP-127b is a low-density planet that has an extended atmosphere with a scale height of 2500+/-400km, making it an ideal candidate for transmission spectroscopy. WASP-136b and WASP-138b are both hot Jupiters with mass and radii of 1.51+/-0.08M_J_ and 1.38+/-0.16R_J_, and 1.22+/-0.08M_J_ and 1.09+/-0.05R_J_, respectively. WASP-136b is in a 5.22-day orbit around an F9 subgiant star with a mass of 1.41+/-0.07M_{sun}_ and a radius of 2.21+/-0.22R_{sun}_. The discovery of WASP-136b could help constrain the characteristics of the giant planet population around evolved stars. WASP-138b orbits an F7 star with a period of 3.63 days. Its radius agrees with theoretical values from standard models, suggesting the presence of a heavy element core with a mass of ~10M_{earth}_. The discovery of these new planets helps in exploring the diverse compositional range of short-period planets, and will aid our understanding of the physical characteristics of both gas giants and low-density planets.
- ID:
- ivo://CDS.VizieR/J/MNRAS/434/1300
- Title:
- WASP-15 and WASP-16 light curves
- Short Name:
- J/MNRAS/434/1300
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new photometric observations of WASP-15 and WASP-16, two transiting extrasolar planetary systems with measured orbital obliquities but without photometric follow-up since their discovery papers. Our new data for WASP-15 comprise observations of one transit simultaneously in four optical passbands using GROND on the MPG/European Southern Observatory (ESO) 2.2m telescope, plus coverage of half a transit from DFOSC on the Danish 1.54m telescope, both at ESO La Silla. For WASP-16 we present observations of four complete transits, all from the Danish telescope. We use these new data to refine the measured physical properties and orbital ephemerides of the two systems. Whilst our results are close to the originally determined values for WASP-15, we find that the star and planet in the WASP-16 system are both larger and less massive than previously thought.
- ID:
- ivo://CDS.VizieR/J/A+A/586/A93
- Title:
- WASP41 and WASP47 photometric and RV data
- Short Name:
- J/A+A/586/A93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41c is a planet of minimum mass 3.18+/-0.20M_Jup_ and eccentricity 0.29+/-0.02, and it orbits in 421+/-2-days. WASP-47c is a planet of minimum mass 1.24+/-0.22M_Jup_ and eccentricity 0.13+/-0.10, and it orbits in 572+/-7-days. Unlike most of the planetary systems that include a hot Jupiter, these two systems with a hot Jupiter have a long-period planet located at only about 1AU from their host star. WASP-41 is a rather young star known to be chromospherically active. To differentiate its magnetic cycle from the radial velocity effect induced by the second planet, we used the emission in the Halpha line and find this indicator well suited to detecting the stellar activity pattern and the magnetic cycle. The analysis of the Rossiter-McLaughlin effect induced by WASP-41b suggests that the planet could be misaligned, though an aligned orbit cannot be excluded. WASP-47 has recently been found to host two additional transiting super Earths. With such an unprecedented architecture, the WASP-47 system will be very important for understanding planetary migration.
- ID:
- ivo://CDS.VizieR/J/A+A/544/A72
- Title:
- WASP-42 and WASP-49 photometry and velocities
- Short Name:
- J/A+A/544/A72
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of two new transiting planets from the WASP survey. WASP-42 b is a 0.500+/-0.035M_Jup_ planet orbiting a K1 star at a separation of 0.0548+/-0.0017AU with a period of 4.9816872+/-7.3x10^-6^days. The radius of WASP-42 b is 1.080+/-0.057R_Jup_ while its equilibrium temperature is T_eq_=995+/-34K. We detect some evidence for a small but non-zero eccentricity of e=0.060+/-0.013. WASP-49 b is a 0.378+/-0.027M_Jup_ planet around an old G6 star. It has a period of 2.7817387+/-5.6x10^-6^days and a separation of 0.0379+/-0.0011AU. This planet is slightly bloated, having a radius of 1.115+/-0.047R_Jup_ and an equilibrium temperature of T_eq_=1369+/-39K. Both planets have been followed up photometrically, and in total we have obtained 5 full and one partial transit light curves of WASP-42 and 4 full and one partial light curves of WASP-49 using the Euler-Swiss, TRAPPIST and Faulkes South telescopes.
- ID:
- ivo://CDS.VizieR/J/A+A/534/A16
- Title:
- WASP-22 and WASP-26 photometry and velocities
- Short Name:
- J/A+A/534/A16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on spectroscopic and photometric observations through transits of the exoplanets WASP-22b and WASP-26b, intended to determine the systems' spin-orbit angles. We combine these data with existing data to refine the system parameters. We measure a sky-projected spin-orbit angle of 22+/-16 degrees for WASP-22b, showing the planet's orbit to be prograde and, perhaps, slightly misaligned. We do not detect the Rossiter-McLaughlin effect of WASP-26b due to its low amplitude and observation noise. We place 3-sigma upper limits on orbital eccentricity of 0.063 for WASP-22b and 0.050 for WASP-26b. After refining the drift in the systemic velocity of WASP-22 found by Maxted et al. (2010AJ....140.2007M), we find the third body in the system to have a separation-scaled minimum-mass of 5.3+/-0.3M_Jup_ (a3/5AU)^2^, where a3 is the orbital separation of the third body.
- ID:
- ivo://CDS.VizieR/J/A+A/547/A61
- Title:
- WASP78 and WASP79 RV and photometric data
- Short Name:
- J/A+A/547/A61
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V=12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b orbits its V=10.1 host star (CD-30 1812) every 3.662 days. Planetary parameters have been determined using a simultaneous fit to WASP and TRAPPIST transit photometry and CORALIE radial-velocity measurements. For WASP-78b a planetary mass of 0.89+/-0.08M_Jup_ and a radius of 1.70+/-0.11R_Jup_ is found. The planetary equilibrium temperature of T_P_=2350+/-80K for WASP-78b makes it one of the hottest of the currently known exoplanets. WASP-79b its found to have a planetary mass of 0.90+/-0.08M_Jup_, but with a somewhat uncertain radius due to lack of sufficient TRAPPIST photometry. The planetary radius is at least 1.70+/-0.11R_Jup_, but could be as large as 2.09+/-0.14R_Jup_, which would make WASP-79b the largest known exoplanet.
- ID:
- ivo://CDS.VizieR/J/A+A/636/A98
- Title:
- WASP-18A, WASP-19, WASP-77A photometry
- Short Name:
- J/A+A/636/A98
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 22 new transit observations of the exoplanets WASP-18Ab, WASP-19b, and WASP-77Ab, from the Transit Monitoring in the South (TraMoS) project. We simultaneously model our newly collected transit light curves with archival photometry and radial velocity data to obtain refined physical and orbital parameters. We include TESS light curves of the three exoplanets to perform an extended analysis of the variations in their transit mid-time (TTV) and to refine their planetary orbital ephemeris. We did not find significant TTVRMS variations larger than 47, 65, and 86 seconds for WASP-18Ab, WASP-19b, and WASP-77Ab, respectively. Dynamical simulations were carried out to constrain the masses of a possible perturber. The observed mean square (RMS) could be produced by a perturber body with an upper limit mass of 9, 2.5, 11 and 4M_{Earth}_ in 1:2, 1:3, 2:1, and 3:1 resonances in the WASP-18Ab system. In the case of WASP-19b, companions with masses up to 0.26, 0.65, 1, and 2.8M_{Earth}_, in 1:2, 2:1, 3:1, and 5:3 resonances respectively, produce the RMS. For the WASP-77Ab system, this RMS could be produced by a planet with mass in the range of 1.5-9M_{Earth}_ in 1:2, 1:3, 2:1, 2:3, 3:1, 3:5, or 5:3 resonances. Comparing our results with RV variations, we discard massive companions with 350M_{Earth}_ in 17:5 resonance for WASP-18Ab, 95M_{Earth}_ in 4:1 resonance for WASP-19b, and 105M_{Earth}_ in 5:2 resonance for WASP-77Ab. Finally, using a Lomb-Scargle period search we find no evidence of a periodic trend on our TTV data for the three exoplanets.
24510. WASP-11b
- ID:
- ivo://CDS.VizieR/J/A+A/502/395
- Title:
- WASP-11b
- Short Name:
- J/A+A/502/395
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of a sub-Jupiter mass exoplanet transiting a magnitude V=11.6 host star 1SWASP J030928.54+304024.7. ************************************************************************** * * * Sorry, but the author(s) never supplied the tabular material * * announced in the paper * * * **************************************************************************