From a quantitative analysis of 413 Virgo Cluster early-type dwarf galaxies (dEs) with SDSS imaging data, we find that the dE class can be divided into multiple subpopulations that differ significantly in their morphology and clustering properties. Three dE subclasses are shaped like thick disks and show no central clustering: (1) dEs with disk features like spiral arms or bars, (2) dEs with central star formation, and (3) ordinary, bright dEs that have no or only a weak nucleus.
We study the dust content of a large optical input sample of 910 early-type galaxies (ETG) in the Virgo cluster, also extending to the dwarf ETG, and examine the results in relation to those on the other cold ISM components. We have searched for far-infrared emission in all galaxies in the input sample using the 250um image of the Herschel Virgo Cluster Survey (HeViCS). This image covers a large fraction of the cluster with an area of ~55 square degrees. For the detected ETG we measured fluxes in five bands from 100 to 500um, and estimated the dust mass and temperature with modified black-body fits. Dust is detected above the completeness limit of 25.4mJy at 250um in 46 ETG, 43 of which are in the optically complete part of the input sample. In addition, dust is present at fainter levels in another six ETG. We detect dust in the four ETG with synchrotron emission, including M 87.
We present an analysis of the globular cluster (GC) system of the nucleated dwarf elliptical galaxy VCC 1087 in the Virgo Cluster based on Keck LRIS spectroscopy and archival Hubble Space Telescope Advanced Camera for Surveys imaging. We estimate that VCC 1087 hosts a total population of 77+/-19 GCs, which corresponds to a relatively high V-band specific frequency of 5.8+/-1.4. The g_475_-z_850_ color distribution of the GCs shows a blue (metal-poor) peak with a tail of redder (metal-rich) clusters similar in color to those seen in luminous elliptical galaxies.
The database contains some outputs of the VCD for the scenarios : {1)
Standard cloud albedo Scenario, solar EUV average conditions ; 2)
Standard cloud albedo Scenario, solar EUV minimum conditions ; 3)
Standard cloud albedo Scenario, solar EUV maximum conditions ; 4) Low
cloud albedo Scenario, solar EUV average conditions ; 5) High cloud
albedo Scenario, solar EUV average conditions available}, at different
positions of latitude and longitude. These VCD outputs are provided as
Votables containing profiles of temperatures, pressures, density and
abundances of main species for altitudes between 0 and 349.5 km from
the surface.
The light curve of the yellow supergiant V810 Centauri in the Geneva photometric system has been analysed with Date Compensate Fourier Transform and Weighted Wavelet Z-transform. Two periods around 150 and 100 days dominate the frequency spectrum but variable amplitudes and other modes are required to fully reproduce whole data set.
New physical elements of the early B-type eclipsing binary V346 Cen are derived using the HARPS spectra downloaded from the ESO archive and also numerous photometric observations from various sources. A model of the observed times of primary and secondary minima that fits them best is a combination of the apsidal motion and an abrupt decrease in the orbital period from 6.322123d to 6.321843d (shortening by 24s), which occurred somewhere around JD 2439000. Assumption of a secularly decreasing orbital period provides a significantly worse fit. Local times of minima and the final solution of the light curve were obtained with the program PHOEBE. Radial velocities of both binary components, free of line blending, were derived via 2-D cross-correlation with a program built on the principles of the program TODCOR. The oxygen lines in the secondary spectra are weaker than those in the model spectra of solar chemical composition. Using the component spectra disentangled with the program KOREL, we find that both components rotate considerably faster than would correspond to the synchronization at periastron. The apside rotation known from earlier studies is confirmed and compared to the theoretical value.
The influence of stellar activity on the fundamental properties of stars around and below 1M_{sun}_ is not well understood. Accurate mass, radius, and abundance determinations from solar-type binaries exhibiting various levels of activity are needed for a better insight into the structure and evolution of these stars. We aim to determine absolute dimensions and abundances for the solar-type detached eclipsing binary V636Cen, and to perform a detailed comparison with results from recent stellar evolutionary models. uvby light curves and uvby{beta} standard photometry were obtained with the Stroemgren Automatic Telescope, radial velocity observations with the CORAVEL spectrometer, and high-resolution spectra with the FEROS spectrograph, all at ESO, La Silla. State-of-the-art methods were applied for the photometric and spectroscopic analyses.
Long-term BVRI photometric light curves of the pre-main sequence stars V977 Cep and V982 Cep during the period from 2000 October to 2016 August are presented. The stars are located in the vicinity of the reflection nebula NGC 7129. Our photometric data show that both stars exhibit strong photometric variability in all optical passbands, which is typical for Classical T Tauri stars. Using our observational data we analyze the reasons for the observed brightness variations. In the case of V977 Cep we identify previously unknown periodicity in its light curve.
Results from UBVRI optical photometric observations of the pre-main sequence star V350 Cep during the period 2004-2014 are presented. The star was discovered in 1977 due to its remarkable increase in brightness by more than 5mag (R). In previous studies, V350 Cep is considered to be a potential FUor or EXor eruptive variable. Our data suggest that during the period of observations the star keeps its maximum brightness with low amplitude photometric variations. Our conclusion is that V350 Cep is probably an intermediate object between FUors and EXors, similar to V1647 Ori.
Our time series analysis of V368 Cep photometry ascertains the rotation period of 2.74d uniquely. The manifestations of starspot induced luminosity variations in this chromospherically active star include rapid light curve changes and differential rotation of about 3%. We conclude that the single rapidly rotating variable V368 Cep is a high inclination K1V post T Tauri star.