- ID:
- ivo://CDS.VizieR/J/AJ/157/174
- Title:
- Transiting planets in Kepler-47 circumbinary system
- Short Name:
- J/AJ/157/174
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Of the nine confirmed transiting circumbinary planet systems, only Kepler-47 is known to contain more than one planet. Kepler-47 b (the "inner planet") has an orbital period of 49.5 days and a radius of about 3 R_{Earth}_. Kepler-47 c (the "outer planet") has an orbital period of 303.2 days and a radius of about 4.7 R_{Earth}_. Here we report the discovery of a third planet, Kepler-47 d (the "middle planet"), which has an orbital period of 187.4 days and a radius of about 7 R_{Earth}_. The presence of the middle planet allows us to place much better constraints on the masses of all three planets, where the 1{sigma} ranges are less than 26 M_{Earth}_, between 7-43 M_{Earth}_, and between 2-5 M_{Earth}_ for the inner, middle, and outer planets, respectively. The middle and outer planets have low bulk densities, with {rho}_middle_<0.68 g/cm^3^ and {rho}_outer_<0.26 g/cm^3^ at the 1{sigma} level. The two outer planets are "tightly packed", assuming the nominal masses, meaning no other planet could stably orbit between them. All of the orbits have low eccentricities and are nearly coplanar, disfavoring violent scattering scenarios and suggesting gentle migration in the protoplanetary disk.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/154/224
- Title:
- Transiting planets in young clusters from K2
- Short Name:
- J/AJ/154/224
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators (P_rot_<2 days) we model the variability using a linear combination of observed rotations of each star. To maximally exploit our new pipeline, we update the membership for four stellar populations observed by K2 (Upper Scorpius, Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R_{Earth}_, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ~4 R_{Earth}_ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.
- ID:
- ivo://CDS.VizieR/J/AJ/157/218
- Title:
- Transiting planets near the snow line from Kepler
- Short Name:
- J/AJ/157/218
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive catalog of cool (period P>~2 yr) transiting planet candidates in the 4 yr light curves from the prime Kepler mission. Most of the candidates show only one or two transits and have largely been missed in the original Kepler Object of Interest catalog. Our catalog is based on all known such candidates in the literature, as well as new candidates from the search in this paper, and provides a resource to explore the planet population near the snow line of Sun-like stars. We homogeneously performed pixel-level vetting, stellar characterization with Gaia parallax and archival/Subaru spectroscopy, and light-curve modeling to derive planet parameters and to eliminate stellar binaries. The resulting clean sample consists of 67 planet candidates whose radii are typically constrained to 5%, in which 23 are newly reported. The number of Jupiter-sized candidates (29 with radius r>8 R_{Earth}_) in the sample is consistent with the Doppler occurrence. The smaller candidates are more prevalent (23 with 4<r/R_{Earth}_<8, 15 with r/R_{Earth}_<4) and suggest that long-period Neptune-sized planets are at least as common as the Jupiter-sized ones, although our sample is yet to be corrected for detection completeness. If the sample is assumed to be complete, these numbers imply the occurrence rate of 0.39+/-0.07 planets with 4<r/R_{Earth}_<14 and 2<P/yr<20 per FGK dwarf. The stars hosting candidates with r>4 R_{Earth}_ have systematically higher [Fe/H] than do the Kepler field stars, providing evidence that giant planet-metallicity correlation extends to P>2 yr.
- ID:
- ivo://CDS.VizieR/J/MNRAS/444/776
- Title:
- Transiting planets WASP-24, 25 and 26
- Short Name:
- J/MNRAS/444/776
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present time-series photometric observations of thirteen transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5 to 1.2mmag relative to their best-fitting geometric models. We use these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25-arcmin of WASP-26.
22375. Transiting planet WASP-103
- ID:
- ivo://CDS.VizieR/J/MNRAS/447/711
- Title:
- Transiting planet WASP-103
- Short Name:
- J/MNRAS/447/711
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 17 transit light curves of the ultrashort period planetary system WASP-103, a strong candidate for the detection of tidally-induced orbital decay. We use these to establish a high-precision reference epoch for transit timing studies. The time of the reference transit mid-point is now measured to an accuracy of 4.8s, versus 67.4s in the discovery paper, aiding future searches for orbital decay. With the help of published spectroscopic measurements and theoretical stellar models, we determine the physical properties of the system to high precision and present a detailed error budget for these calculations. The planet has a Roche lobe filling factor of 0.58, leading to a significant asphericity; we correct its measured mass and mean density for this phenomenon. A high-resolution Lucky Imaging observation shows no evidence for faint stars close enough to contaminate the point spread function of WASP-103. Our data were obtained in the Bessell RI and the SDSS griz passbands and yield a larger planet radius at bluer optical wavelengths, to a confidence level of 7.3{sigma}. Interpreting this as an effect of Rayleigh scattering in the planetary atmosphere leads to a measurement of the planetary mass which is too small by a factor of 5, implying that Rayleigh scattering is not the main cause of the variation of radius with wavelength.
22376. Transiting planet WASP-6b
- ID:
- ivo://CDS.VizieR/J/MNRAS/450/1760
- Title:
- Transiting planet WASP-6b
- Short Name:
- J/MNRAS/450/1760
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present updates to prism, a photometric transit-starspot model, and gemc, a hybrid optimization code combining MCMC and a genetic algorithm. We then present high-precision photometry of four transits in the WASP-6 planetary system, two of which contain a starspot anomaly. All four transits were modelled using prism and gemc, and the physical properties of the system calculated. We find the mass and radius of the host star to be 0.836+/-0.063M_{sun}_ and 0.864+/-0.024R_{sun}_, respectively. For the planet, we find a mass of 0.485+/-0.027M_Jup_, a radius of 1.230+/-0.035R_Jup_ and a density of 0.244+/-0.014{rho}_Jup_. These values are consistent with those found in the literature. In the likely hypothesis that the two spot anomalies are caused by the same starspot or starspot complex, we measure the stars rotation period and velocity to be 23.80+/-0.15d and 1.78+/-0.20km/s, respectively, at a colatitude of 75.8{deg}. We find that the sky-projected angle between the stellar spin axis and the planetary orbital axis is {lambda}=7.2{deg}+/-3.7{deg}, indicating axial alignment. Our results are consistent with and more precise than published spectroscopic measurements of the Rossiter-McLaughlin effect. These results suggest that WASP-6 b formed at a much greater distance from its host star and suffered orbital decay through tidal interactions with the protoplanetary disc.
22377. Transiting planet WASP-50b
- ID:
- ivo://CDS.VizieR/J/MNRAS/431/966
- Title:
- Transiting planet WASP-50b
- Short Name:
- J/MNRAS/431/966
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present photometric observations of two transits in the WASP-50 planetary system, obtained using the ESO New Technology Telescope and the defocused-photometry technique. The rms scatters for the two data sets are 258 and 211 ppm with a cadence of 170-200s, setting a new record for ground-based photometric observations of a point source. The data were modelled and fitted using the prism and gemc codes, and the physical properties of the system calculated. We find the mass and radius of the hot star to be 0.861+/-0.057M{sun} and 0.855+/-0.019R{sun}, respectively. For the planet we find a mass of 1.437+/-0.068M_Jup_, a radius of 1.138+/-0.026R_Jup_ and a density of 0.911+/-0.033{rho}Jup. These values are consistent with but more precise than those found in the literature. We also obtain a new orbital ephemeris for the system: T_0_= BJD/TDB 2455558.61237(20)+1.9550938(13)xE.
22378. Transiting planet WASP-4b
- ID:
- ivo://CDS.VizieR/J/MNRAS/490/4230
- Title:
- Transiting planet WASP-4b
- Short Name:
- J/MNRAS/490/4230
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transits in the planetary system WASP-4 were recently found to occur 80s earlier than expected in observations from the TESS satellite. We present 22 new times of mid-transit that confirm the existence of transit timing variations, and are well fitted by a quadratic ephemeris with period decay dP/dt=-9.2+/-1.1ms/yr. We rule out instrumental issues, stellar activity and the Applegate mechanism as possible causes. The light-time effect is also not favoured due to the non-detection of changes in the systemic velocity. Orbital decay and apsidal precession are plausible but unproven. WASP-4b is only the third hot Jupiter known to show transit timing variations to high confidence. We discuss a variety of observations of this and other planetary systems that would be useful in improving our understanding of WASP-4 in particular and orbital decay in general.
22379. Transiting planet WASP-19b
- ID:
- ivo://CDS.VizieR/J/MNRAS/428/3671
- Title:
- Transiting planet WASP-19b
- Short Name:
- J/MNRAS/428/3671
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have developed a new model for analysing light curves of planetary transits when there are starspots on the stellar disc. Because the parameter space contains a profusion of local minima we developed a new optimization algorithm which combines the global minimization power of a genetic algorithm and the Bayesian statistical analysis of the Markov chain. With these tools we modelled three transit light curves of WASP-19. Two light curves were obtained on consecutive nights and contain anomalies which we confirm as being due to the same spot. Using these data we measure the star's rotation period and velocity to be 11.76+/-0.09d and 3.88+/-0.15km/s, respectively, at a latitude of 65{deg}. We find that the sky-projected angle between the stellar spin axis and the planetary orbital axis is {lambda} =1.0+/-1.2{deg}, indicating axial alignment. Our results are consistent with and more precise than published spectroscopic measurements of the Rossiter-McLaughlin effect.
22380. Transitional YSOs candidates
- ID:
- ivo://CDS.VizieR/J/A+A/352/228
- Title:
- Transitional YSOs candidates
- Short Name:
- J/A+A/352/228
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We are searching for Young Stellar Objects (YSOs) near the boundary between protostars and pre-main-sequence objects, what we term Transitional YSOs. We have identified a sample of 125 objects as candidate transitional YSOs on the basis of IRAS colors and the optical appearance on POSS plates. We have obtained optical and near-IR imaging of 82 objects accessible from the Northern Hemisphere and optical images of 62 sources accessible from the South. We also created deconvolved 60{mu}m IRAS images of all sources. We have classified the objects on the basis of their morphology in the optical and near-IR images. We find that the majority of our objects are associated with star-forming regions, confirming our expectation that the bulk of these objects are YSOs. Of the 125 objects, 28 have a variety of characteristics very similar to other transitional YSOs, while another 22 show some of these characteristics. Furthermore we have found seven objects to be good candidates for members of the Herbig Ae/Be stellar group, of which three are newly identified as such.