We present a study of the seasonal evolution of Titan's thermal field and distributions of haze, C_2_H_2_, C_2_H_4_, C_2_H_6_, CH_3_C_2_H, C_3_H_8_, C_4_H_2_, C_6_H_6_, HCN, and HC_3_N from March 2015 (Ls=66{deg}) to September 2017 (Ls=93{deg}) (i.e., from the last third of northern spring to early summer). We analyzed thermal emission of Titan's atmosphere acquired by the Cassini Composite Infrared Spectrometer (CIRS) with limb and nadir geometry to retrieve the stratospheric and mesospheric temperature and mixing ratios pole-to-pole meridional cross sections from 5mbar to 50ubar (120-650km). The southern stratopause varied in a complex way and showed a global temperature increase from 2015 to 2017 at high-southern latitudes. Stratospheric southern polar temperatures, which were observed to be as low as 120K in early 2015 due to the polar night, showed a 30K increase (at 0.5mbar) from March 2015 to May 2017 due to adiabatic heating in the subsiding branch of the global overturning circulation. All photochemical compounds were enriched at the south pole by this subsidence. Polar cross sections of these enhanced species, which are good tracers of the global dynamics, highlighted changes in the structure of the southern polar vortex. These high enhancements combined with the unusually low temperatures (<120K) of the deep stratosphere resulted in condensation at the south pole between 0.1 and 0.03mbar (240-280km) of HCN, HC_3_N, C_6_H_6_ and possibly C4H2 in March 2015 (Ls=66{deg}). These molecules were observed to condense deeper with increasing distance from the south pole. At high-northern latitudes, stratospheric enrichments remaining from the winter were observed below 300km between 2015 and May 2017 (Ls=90{deg}) for all chemical compounds and up to September 2017 (Ls=93{deg}) for C_2_H_2_, C_2_H_4_, CH_3_C_2_H, C_3_H_8_, and C_4_H_2_. In September 2017, these local enhancements were less pronounced than earlier for C_2_H_2_, C_4_H_2_, CH_3_C_2_H, HC_3_N, and HCN, and were no longer observed for C_2_H_6_ and C_6_H_6_, which suggests a change in the northern polar dynamics near the summer solstice. These enhancements observed during the entire spring may be due to confinement of this enriched air by a small remaining winter circulation cell that persisted in the low stratosphere up to the northern summer solstice, according to predictions of the Institut Pierre Simon Laplace Titan Global Climate Model (IPSL Titan GCM). In the mesosphere we derived a depleted layer in C_2_H_2_, HCN, and C_2_H_6_ from the north pole to mid-southern latitudes, while C_4_H_2_, C_3_H_4_, C_2_H_4_, and HC_3_N seem to have been enriched in the same region. In the deep stratosphere, all molecules except C_2_H_4_ were depleted due to their condensation sink located deeper than 5mbar outside the southern polar vortex. HCN, C_4_H_2_, and CH_3_C_2_H volume mixing ratio (VMR) cross section contours showed steep slopes near the mid-latitudes or close to the equator, which can be explained by upwelling air in this region. Upwelling is also supported by the cross section of the C_2_H_4_ (the only molecule not condensing among those studied here) volume mixing ratio observed in the northern hemisphere. We derived the zonal wind velocity up to mesospheric levels from the retrieved thermal field. We show that zonal winds were faster and more confined around the south pole in 2015 (Ls=67-72{deg}) than later. In 2016, the polar zonal wind speed decreased while the fastest winds had migrated toward low-southern latitudes.
Several large stellar spectroscopic surveys are producing overwhelming amounts of data that can be used for determining stellar atmospheric parameters and chemical abundances. Nonetheless, the accuracy achieved in the derived astrophysical parameters is still insufficient, mainly because of the paucity of adequate calibrators, particularly in the metal-poor regime ([Fe/H]<=-1.0). Our aim is to increase the number of metal-poor stellar calibrators that have accurate parameters. Here, we introduce the Titans metal-poor reference stars: a sample of 41 dwarf and subgiant stars with accurate, but model-dependent, parameters. Effective temperatures (Teff) were derived by fitting observed H{alpha} profiles with synthetic lines computed using three dimensional (3D) hydrodynamic model atmospheres that take into account departures from the local thermodynamic equilibrium (non-LTE effects). Surface gravities (logg) were computed using evolutionary tracks and parallaxes from Gaia early-data release 3. The same methods recover the Teff values of the Gaia benchmark stars, which are mostly based on interferometric measurements, with a 1{sigma} dispersion of 50K. We assume this to be the accuracy of the H{alpha} profiles computed from 3D non-LTE models for metal-poor dwarfs and subgiants, although this is likely an upper-bound estimate dominated by the uncertainty of the standard Teff values. We achieved an internal precision typically between 30-40K, these errors dominated by instrumental effects. The final total uncertainty for the Teff values of the Titans are thus estimated to be of the order of 1%. The typical error for logg is 0.04dex. In addition, we identified a few members of Gaia-Enceladus, of Sequoia, and of the Helmi stream in our sample. These stars can pave the way for the accurate chemical characterization of these Galactic substructures. Using the Titans as reference, large stellar surveys will be able to improve the internal calibration of their astrophysical parameters. Ultimately, this sample will help users of data from Gaia and large surveys in reaching their goal of redefining our understanding of stars, stellar systems, and the Milky Way.
We analyse a sample of multiple-exoplanet systems which contain at least three transiting planets detected by the Kepler mission ('Kepler multiples'). We use a generalized Titius-Bode relation to predict the periods of 228 additional planets in 151 of these Kepler multiples. These Titius-Bode-based predictions suggest that there are, on average, 2+/-1 planets in the habitable zone of each star. We estimate the inclination of the invariable plane for each system and prioritize our planet predictions by their geometric probability to transit. We highlight a short list of 77 predicted planets in 40 systems with a high geometric probability to transit, resulting in an expected detection rate of ~15%, ~3 times higher than the detection rate of our previous Titius-Bode-based predictions.
We report the results of an extensive imaging and spectroscopic survey in the Great Observatories Origins Deep Survey (GOODS)-North field completed using DEIMOS on the Keck II telescope. Observations of 2018 targets in a magnitude-limited sample of 2911 objects to R_AB_=24.4 yield secure redshifts for a sample of 1440 galaxies and active galactic nuclei (AGNs) plus 96 stars. In addition to redshifts and associated quality assessments, our catalog also includes photometric and astrometric measurements for all targets detected in our R-band imaging survey of the GOODS-North region.
We present kinematic measurements of a large sample of galaxies from the Team Keck Redshift Survey in the GOODS-N field. We measure line-of-sight velocity dispersions from integrated emission for 1089 galaxies with median redshift 0.637 and spatially resolved kinematics for a subsample of 380 galaxies. This is the largest sample of galaxies to z~1 with kinematics to date and allows us to measure kinematic properties without morphological pre-selection. Emission-line widths provide a dynamical measurement for the bulk of blue galaxies. To fit the spatially resolved kinematics, we construct models that fit both line-of-sight rotation amplitude and velocity dispersion. Integrated line width correlates well with a combination of the velocity gradient and dispersion and is a robust measure of galaxy kinematics.
TLUSTY OSTAR2002+BSTAR2006 Grid, The merged files use the BSTAR2006 models for effective temperatures up to 30,000 K and the OSTAR2002 models for higher temperatures.