- ID:
- ivo://CDS.VizieR/J/AJ/157/113
- Title:
- TESS M-dwarf exoplanetary systems
- Short Name:
- J/AJ/157/113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a study of the M-dwarf exoplanetary systems forthcoming from NASA's TESS mission. While the mission's footprint is too complex to be characterized by a single detection completeness, we extract ensemble completeness functions that recover the planet detections from previous work for stars between 3200 and 4000 K. We employ these completeness functions, together with a dual- population planet occurrence model that includes compact multiple planetary systems, to infer anew the planet yield. We predict both the number of M-dwarf planets likely from TESS and their system architectures. We report four main findings. First, TESS will likely detect more planets orbiting M dwarfs that previously predicted. Around stars with effective temperatures between 3200 and 4000 K, we predict that TESS will find 1274+/-241 planets orbiting 1026+/-182 stars, a 1.2-fold increase over previous predictions. Second, TESS will find two or more transiting planets around 20% of these host stars, a number similar to the multiplicity yield of NASA's Kepler mission. Third, TESS light curves in which one or more planets are detected will often contain transits of additional planets below the detection threshold of TESS. Among a typical set of 200 TESS hosts to one or more detected planets, 93+/-17 transiting planets will be missed. Transit follow-up efforts with the photometric sensitivity to detect an Earth or larger around a mid-M dwarf, even with very modest period completeness, will readily result in additional planet discoveries. Fourth, the strong preference of TESS for systems of compact multiples indicates that TESS planets will be dynamically cooler on average than Kepler planets, with 90% of TESS planets residing in orbits with e<0.15. We include both (1) a predicted sample of planets detected by TESS orbiting stars between 3200 and 4000 K, including additional nontransiting planets, or transiting and undetected planets orbiting the same star and (2) sample completeness functions for use by the community.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/652/A120
- Title:
- TESS OBA-type eclipsing binaries
- Short Name:
- J/A+A/652/A120
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Intermediate- to high-mass stars are the least numerous types of stars and they are less well understood than their more numerous low-mass counterparts in terms of their internal physical processes. Modelling the photometric variability of a large sample of main-sequence intermediate- to high-mass stars in eclipsing binary systems will help to improve the models for such stars. Our goal is to compose a homogeneously compiled sample of main-sequence intermediate- to high-mass OBA-type dwarfs in eclipsing binary systems from TESS photometry. We search for binaries with and without pulsations and determine their approximate ephemerides. Our selection starts from a catalogue of dwarfs with colours corresponding to those of OBA-type dwarfs in the TESS Input Catalog. We develop a new automated method aimed at detecting eclipsing binaries in the presence of strong pulsational and/or rotational signal relative to the eclipse depths and apply it to publicly available 30-min cadence TESS light curves. Using targets with TESS magnitudes below 15 and cuts in the 2MASS magnitude bands of J-H<0.045 and J-K<0.06 as most stringent criteria, we arrive at a total of 189 981 intermediate- to high-mass candidates, 91193 of which have light curves from at least one of two data reduction pipelines. The eclipsing binary detection and subsequent manual check for false positives resulted in 3155 unique OBA-type eclipsing binary candidates. Our sample of eclipsing binary stars in the intermediate- to high-mass regime allows for future binary (and asteroseismic) modelling with the aim to better understand the internal physical processes in this hot part of the main sequence.
- ID:
- ivo://CDS.VizieR/J/ApJS/253/11
- Title:
- TESS observations of Cepheid stars
- Short Name:
- J/ApJS/253/11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first analysis of Cepheid stars observed by the TESS space mission in Sectors 1-5. Our sample consists of 25 pulsators: ten fundamental mode, three overtone and two double-mode classical Cepheids, plus three type II and seven anomalous Cepheids. The targets were chosen from fields with different stellar densities, both from the Galactic field and from the Magellanic System. Three targets have 2 minutes cadence light curves available by the TESS Science Processing Operations Center: for the rest, we prepared custom light curves from the full-frame images with our own differential photometric FITSH pipeline. Our main goal was to explore the potential and the limitations of TESS concerning the various subtypes of Cepheids. We detected many low-amplitude features: weak modulation, period jitter, and timing variations due to light-time effect. We also report signs of nonradial modes and the first discovery of such a mode in an anomalous Cepheid, the overtone star XZ Cet, which we then confirmed with ground-based multicolor photometric measurements. We prepared a custom photometric solution to minimize saturation effects in the bright fundamental-mode classical Cepheid, {beta} Dor with the lightkurve software, and we revealed strong evidence of cycle-to-cycle variations in the star. In several cases, however, fluctuations in the pulsation could not be distinguished from instrumental effects, such as contamination from nearby sources, which also varies between sectors.
- ID:
- ivo://CDS.VizieR/J/ApJ/872/L9
- Title:
- TESS obs. of massive O and B stars
- Short Name:
- J/ApJ/872/L9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Uncertainties in stellar structure and evolution theory are largest for stars undergoing core convection on the main sequence. A powerful way to calibrate the free parameters used in the theory of stellar interiors is asteroseismology, which provides direct measurements of angular momentum and element transport. We report the detection and classification of new variable O and B stars using high-precision short-cadence (2 minutes) photometric observations assembled by the Transiting Exoplanet Survey Satellite (TESS). In our sample of 154 O and B stars, we detect a high percentage (90%) of variability. Among these we find 23 multiperiodic pulsators, 6 eclipsing binaries, 21 rotational variables, and 25 stars with stochastic low-frequency variability. Several additional variables overlap between these categories. Our study of O and B stars not only demonstrates the high data quality achieved by TESS for optimal studies of the variability of the most massive stars in the universe, but also represents the first step toward the selection and composition of a large sample of O and B pulsators with high potential for joint asteroseismic and spectroscopic modeling of their interior structure with unprecedented precision.
- ID:
- ivo://CDS.VizieR/J/A+A/648/A71
- Title:
- TESS optical phase curve of KELT-1b
- Short Name:
- J/A+A/648/A71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the detection and analysis of the phase curve of KELT-1b at optical wavelengths, analyzing data taken by the Transiting Exoplanet Survey Satellite (TESS). The light curve shows variations due to ellipsoidal variations, Doppler beaming, transit and secondary eclipse of KELT-1, and phase curve variations of KELT-1b.
- ID:
- ivo://CDS.VizieR/J/A+A/633/A53
- Title:
- TESS planet candidates classification
- Short Name:
- J/A+A/633/A53
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Accurately and rapidly classifying exoplanet candidates from transit surveys is a goal of growing importance as the data rates from space-based survey missions increase. This is especially true for NASA's TESS mission which generates thousands of new candidates each month. Here we created the first deep learning model capable of classifying TESS planet candidates. We adapted the neural network model of Ansdell et al (2018) to TESS data. We then trained and tested this updated model on 4 sectors of high-fidelity, pixel-level simulations data created using the Lilith simulator & processed using the full TESS pipeline. With the caveat that direct transfer of the model to real data will not perform as accurately, we also applied this model to four sectors of TESS candidates. We find our model performs very well on our simulated data, with 97% average precision and 92% accuracy on planets in the 2-class model. This accuracy is also boosted by another ~4% if planets found at the wrong periods are included. We also performed 3- and 4-class classification of planets, blended & target eclipsing binaries, and non-astrophysical false positives, which have slightly lower average precision and planet accuracies, but are useful for follow-up decisions. When applied to real TESS data, 61% of Threshold Crossing Events (TCEs) coincident with currently published TOIs are recovered as planets, 4% more are suggested to be Eclipsing Binaries, and we propose a further 200 TCEs as planet candidates.
- ID:
- ivo://CDS.VizieR/J/PASP/131/C4401
- Title:
- TESS predicted yield of transits
- Short Name:
- J/PASP/131/C4401
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Radial velocity (RV) surveys have detected hundreds of exoplanets through their gravitational interactions with their host stars. Some will be transiting, but most lack sufficient follow-up observations to confidently detect (or rule out) transits. We use published stellar, orbital, and planetary parameters to estimate the transit probabilities for nearly all exoplanets that have been discovered via the RV method. From these probabilities, we predict that 25.5_-0.7_^+0.7^ of the known RV exoplanets should transit their host stars. This prediction is more than double the amount of RV exoplanets that are currently known to transit. The Transiting Exoplanet Survey Satellite (TESS) presents a valuable opportunity to explore the transiting nature of many of the known RV exoplanet systems. Based on the anticipated pointing of TESS during its two-year primary mission, we identify the known RV exoplanets that it will observe and predict that 11.7_-0.3_^+0.3^ of them will have transits detected by TESS. However, we only expect the discovery of transits for ~3 of these exoplanets to be novel (i.e., not previously known). We predict that the TESS photometry will yield dispositive null results for the transits of ~125 RV exoplanets. This will represent a substantial increase in the effort to refine ephemerides of known RV exoplanets. We demonstrate that these results are robust to changes in the ecliptic longitudes of future TESS observing sectors. Finally, we consider how several potential TESS extended mission scenarios affect the number of transiting RV exoplanets we expect TESS to observe.
- ID:
- ivo://CDS.VizieR/J/A+A/649/A64
- Title:
- TESS time of eclipse of 15 eclipsing binaries
- Short Name:
- J/A+A/649/A64
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- The change in the argument of periastron of eclipsing binaries, that is, the apsidal motion caused by classical and relativistic effects, can be measured from variations in the difference between the time of minimum light of the primary and secondary eclipses. Poor apsidal motion rate determinations and large uncertainties in the classical term have hampered previous attempts to determine the general relativistic term with sufficient precision to test general relativity predictions. As a product of the TESS mission, thousands of high-precision light curves from eclipsing binaries are now available. Using a selection of suitable well-studied eccentric eclipsing binary systems, we aim to determine their apsidal motion rates and place constraints on key gravitational parameters. We compute the time of minimum light from the TESS light curves of 15 eclipsing binaries with precise absolute parameters and with an expected general relativistic contribution to the total apsidal motion rate of greater than 60%. We use the changing primary and secondary eclipse timing differences over time to compute the apsidal motion rate, when possible, or the difference between the linear periods as computed from primary and secondary eclipses. For a greater time baseline we carefully combine the high-precision TESS timings with archival reliable timings. We determine the apsidal motion rate of 9 eclipsing binaries, 5 of which are reported for the first time. From these, we are able to measure the general relativistic apsidal motion rate of 6 systems with sufficient precision to test general relativity for the first time using this method. This test explores a regime of gravitational forces and potentials that had not been probed before. We find perfect agreement with theoretical predictions, and we are able to set stringent constraints on two parameters of the parametrised post-Newtonian formalism.
- ID:
- ivo://ia2.inaf.it/hosted/dabrusco2009/cqso
- Title:
- [TEST] DAbrusco et al 2009 Catalogue of SDSS Quasar candidates
- Date:
- 13 Mar 2019 11:56:22
- Publisher:
- IA2
- Description:
- [TEST] We present a method for the photometric selection of candidate quasars in multiband surveys. The method makes use of a priori knowledge derived from a subsample of spectroscopic confirmed quasi-stellar objects (QSOs) to map the parameter space. The disentanglement of QSOs candidates and stars is performed in the colour space through the combined use of two algorithms, the probabilistic principal surfaces and the negative entropy clustering, which are for the first time used in an astronomical context. Both methods have been implemented in the VONEURAL package on the Astrogrid Virtual Observatory platform. Even though they belong to the class of the unsupervised clustering tools, the performances of the method are optimized by using the available sample of confirmed quasars and it is therefore possible to learn from any improvement in the available `base of knowledge'. The method has been applied and tested on both optical and optical plus near-infrared data extracted from the visible Sloan Digital Sky Survey (SDSS) and infrared United Kingdom Infrared Deep Sky Survey-Large Area Survey public data bases. In all cases, the experiments lead to high values of both efficiency and completeness, comparable if not better than the methods already known in the literature. A catalogue of optical candidate QSOs extracted from the SDSS Data Release 7 Legacy photometric data set has been produced and is publicly available at the URL http://voneural.na.infn.it/qso.html.
- ID:
- ivo://CDS.VizieR/J/ApJ/704/1405
- Title:
- Testing the E_peak_-E_iso_ relation for GRBs
- Short Name:
- J/ApJ/704/1405
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- One of the most prominent, yet controversial associations derived from the ensemble of prompt-phase observations of gamma-ray bursts (GRBs) is the apparent correlation in the source frame between the peak energy (E_peak_) of the {nu}F({nu}) spectrum and the isotropic radiated energy, E_iso_. Since most GRBs have E_peak_ above the energy range (15-150keV) of the Burst Alert Telescope (BAT) on Swift, determining accurate E_peak_ values for large numbers of Swift bursts has been difficult. However, by combining data from Swift/BAT and the Suzaku Wide-band All-Sky Monitor (WAM), which covers the energy range from 50 to 5000keV, for bursts which are simultaneously detected, one can accurately fit E_peak_ and E_iso_ and test the relationship between them for the Swift sample. Between the launch of Suzaku in 2005 July and the end of 2009 April, there were 48 GRBs that triggered both Swift/BAT and WAM, and an additional 48 bursts that triggered Swift and were detected by WAM, but did not trigger. A BAT-WAM team has cross-calibrated the two instruments using GRBs, and we are now able to perform joint fits on these bursts to determine their spectral parameters. For those bursts with spectroscopic redshifts, we can also calculate the isotropic energy. Here, we present the results of joint Swift/BAT-Suzaku/WAM spectral fits for 91 of the bursts detected by the two instruments.