- ID:
- ivo://CDS.VizieR/J/A+A/593/A68
- Title:
- PTF12os and iPTF13bvn spectra and light curves
- Short Name:
- J/A+A/593/A68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate two stripped-envelope supernovae (SNe) discovered in the nearby galaxy NGC 5806 by the (i)PTF. We classify PTF12os as a Type IIb SN based on our spectral sequence; iPTF13bvn has previously been classified as Type Ib. Our main objective is to constrain the explosion parameters of iPTF12os and iPTF13bvn, and to put constraints on the SN progenitors, using our comprehensive photometric and spectroscopic datasets.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/870/1
- Title:
- PUSH CCSN to explosions in spherical symmetry. II.
- Short Name:
- J/ApJ/870/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In a previously presented proof-of-principle study, we established a parameterized spherically symmetric explosion method (PUSH) that can reproduce many features of core-collapse supernovae (CCSN). The present paper goes beyond a specific application that is able to reproduce observational properties of SN1987A and performs a systematic study of an extensive set of nonrotating, solar metallicity stellar progenitor models in the mass range from 10.8 to 120M_{sun}_. This includes the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, possibly faint supernovae, and failed supernovae. We discuss the explosion properties of all models and predict remnant mass distributions within this approach. The present paper provides the basis for extended nucleosynthesis predictions in a forthcoming paper to be employed in galactic evolution models.
- ID:
- ivo://CDS.VizieR/J/ApJ/870/2
- Title:
- PUSH CCSN to explosions in spherical symmetry. III.
- Short Name:
- J/ApJ/870/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In a previously presented proof-of-principle study, we established a parameterized spherically symmetric explosion method (PUSH) that can reproduce many features of core-collapse supernovae (CCSNe) for a wide range of pre-explosion models. The method is based on the neutrino-driven mechanism and follows collapse, bounce, and explosion. There are two crucial aspects of our model for nucleosynthesis predictions. First, the mass cut and explosion energy emerge simultaneously from the simulation (determining, for each stellar model, the amount of Fe-group ejecta). Second, the interactions between neutrinos and matter are included consistently (setting the electron fraction of the innermost ejecta). In the present paper, we use the successful explosion models from Paper II (Ebinger+, 2019, J/ApJ/870/1) that include two sets of pre-explosion models at solar metallicity, with combined masses between 10.8 and 120M_{sun}_. We perform systematic nucleosynthesis studies and predict detailed isotopic yields. The resulting ^56^Ni ejecta are in overall agreement with observationally derived values from normal CCSNe. The Fe-group yields are also in agreement with derived abundances for metal-poor star HD84937. We also present a comparison of our results with observational trends in alpha element to iron ratios.
- ID:
- ivo://CDS.VizieR/J/ApJ/573/306
- Title:
- Radio emission from supernovae
- Short Name:
- J/ApJ/573/306
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report Very Large Array radio observations of 29 supernovae (SNe) with ages ranging from 10 days to about 90yr past explosion. These observations significantly contribute to the existing data pool on such objects. Included are detections of known radio SNe 1950B, 1957D, 1970G, and 1983N, the suspected radio SN 1923A, and the possible radio SN 1961V. None of the remaining 23 observations resulted in detections, providing further evidence to support the observed trend that most SNe are not detectable radio emitters. To investigate the apparent lack of radio emission from the SNe reported here, we have followed standard practice and used Chevalier's "standard model" to derive (upper limits to) the mass-loss rates for the supernova progenitors. These upper limits to the fluxes are consistent with a lack of circumstellar material needed to provide detectable radio emission for SNe at these ages and distances. Comparison of the radio luminosities of these supernovae as a function of age past explosion to other well-observed radio SNe indicates that the Type II SNe upper limits are more consistent with the extrapolated light curves of SN 1980K than of SN 1979C, suggesting that SN 1980K may be a more typical radio emitter than SN 1979C. For completeness, we have included an appendix where the results of analyses of the non-SN radio sources are presented. Where possible, we make (tentative) identifications of these sources using various methods.
- ID:
- ivo://CDS.VizieR/J/other/Nat/463.513
- Title:
- Radio observations of SN 2009bb
- Short Name:
- J/other/Nat/463.
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.
- ID:
- ivo://CDS.VizieR/J/ApJ/903/132
- Title:
- Radio & optical observations of supernova SN2020oi
- Short Name:
- J/ApJ/903/132
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- We report the discovery and panchromatic follow-up observations of the young Type Ic supernova (SNIc) SN2020oi in M100, a grand-design spiral galaxy at a mere distance of 14Mpc. We followed up with observations at radio, X-ray, and optical wavelengths from only a few days to several months after explosion. The optical behavior of the supernova is similar to those of other normal SNeIc. The event was not detected in the X-ray band but our radio observations revealed a bright mJy source (L_{nu}_~1.2x10^27^erg/s/Hz). Given the relatively small number of stripped envelope SNe for which radio emission is detectable, we used this opportunity to perform a detailed analysis of the comprehensive radio data set we obtained. The radio-emitting electrons initially experience a phase of inverse Compton cooling, which leads to steepening of the spectral index of the radio emission. Our analysis of the cooling frequency points to a large deviation from equipartition at the level of {epsilon}_e_/{epsilon}_B_>~200, similar to a few other cases of stripped envelope SNe. Our modeling of the radio data suggests that the shock wave driven by the SN ejecta into the circumstellar matter (CSM) is moving at ~3x10^4^km/s. Assuming a constant mass loss from the stellar progenitor, we find that the mass-loss rate is M~1.4x10^-4^M{sun}/yr for an assumed wind velocity of 1000km/s. The temporal evolution of the radio emission suggests a radial CSM density structure steeper than the standard r-2.
- ID:
- ivo://CDS.VizieR/J/ApJ/820/33
- Title:
- R-band light curves of type II supernovae
- Short Name:
- J/ApJ/820/33
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with >5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1-3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M=(0.2-20)x10^51^erg/(10M_{sun}), and have a mean energy per unit mass of <E/M>=0.85x10^51^erg/(10M_{sun}), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of ^56^Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ({Delta}m_15_), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.
- ID:
- ivo://CDS.VizieR/J/ApJ/747/L5
- Title:
- R-band observations of PTF 10vgv
- Short Name:
- J/ApJ/747/L5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the discovery of PTF 10vgv, a Type Ic supernova (SN) detected by the Palomar Transient Factory, using the Palomar 48 inch telescope (P48). R-band observations of the PTF 10vgv field with P48 probe the SN emission from its very early phases (about two weeks before R-band maximum) and set limits on its flux in the week prior to the discovery. Our sensitive upper limits and early detections constrain the post-shock-breakout luminosity of this event. Via comparison to numerical (analytical) models, we derive an upper-limit of R<~4.5R_{sun}_ (R<~1R_{sun}_) on the radius of the progenitor star, a direct indication in favor of a compact Wolf-Rayet star. Applying a similar analysis to the historical observations of SN 1994I yields R<~1/4R_{sun}_ for the progenitor radius of this SN.
- ID:
- ivo://CDS.VizieR/J/ApJ/811/117
- Title:
- R-band PTF observations of SNe IIb
- Short Name:
- J/ApJ/811/117
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The progenitor stars of several Type IIb supernovae (SNe) show indications of extended hydrogen envelopes. These envelopes might be the outcome of luminous energetic pre-explosion events, so-called precursor eruptions. We use the Palomar Transient Factory (PTF) pre-explosion observations of a sample of 27 nearby SNe IIb to look for such precursors during the final years prior to the SN explosion. No precursors are found when combining the observations in 15-day bins, and we calculate the absolute-magnitude-dependent upper limit on the precursor rate. At the 90% confidence level, SNe IIb have on average <0.86 precursors as bright as an absolute R-band magnitude of -14 in the final 3.5 years before the explosion and <0.56 events over the final year. In contrast, precursors among SNe IIn have a >~5 times higher rate. The kinetic energy required to unbind a low-mass stellar envelope is comparable to the radiated energy of a few-weeks-long precursor that would be detectable for the closest SNe in our sample. Therefore, mass ejections, if they are common in such SNe, are radiatively inefficient or have durations longer than months. Indeed, when using 60-day bins, a faint precursor candidate is detected prior to SN 2012cs (~2% false-alarm probability). We also report the detection of the progenitor of SN 2011dh that does not show detectable variability over the final two years before the explosion. The suggested progenitor of SN 2012P is still present, and hence is likely a compact star cluster or an unrelated object.
- ID:
- ivo://CDS.VizieR/J/A+A/529/L4
- Title:
- Reddening law of type Ia supernovae
- Short Name:
- J/A+A/529/L4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We employ 76 type Ia supernovae (SNe Ia) with optical spectrophotometry within 2.5 days of B-band maximum light obtained by the Nearby Supernova Factory to derive the impact of Si and Ca features on the supernovae intrinsic luminosity and determine a dust reddening law. We use the equivalent width of SiII {lambda}4131 in place of the light curve stretch to account for first-order intrinsic luminosity variability. The resulting empirical spectral reddening law exhibits strong features that are associated with CaII and SiII {lambda}6355. After applying a correction based on the CaII H&K equivalent width we find a reddening law consistent with a Cardelli extinction law. Using the same input data, we compare this result to synthetic rest-frame UBVRI-like photometry to mimic literature observations.