- ID:
- ivo://CDS.VizieR/I/237
- Title:
- The Washington Visual Double Star Catalog, 1996.0
- Short Name:
- I/237
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Washington Visual Double Star Catalog, 1996.0 (WDS) is the successor to the catalog of the same name dated 1984 <I/107>. The WDS is intended to contain all known visual double stars for which at least one differential measure has been published through the end of 1995. It includes a discoverer code, the date of the first and last observations, the number of observations, the position angle and separation for the first and last observation, the magnitudes and spectral types of the components (when available) the proper motion of the system, Durchmusterung numbers of the components and notes for further information.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/422/1988
- Title:
- Three short-period, transiting exoplanets
- Short Name:
- J/MNRAS/422/1988
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of three extrasolar planets that transit their moderately bright (m_V_=12-13) host stars. WASP-44b is a 0.89-M_Jup_ planet in a 2.42-day orbit around a G8V star. WASP-45b is a 1.03-M_Jup_ planet which passes in front of the limb of its K2V host star every 3.13-days. Weak CaII H&K emission seen in the spectra of WASP-45 suggests that the star is chromospherically active. WASP-46b is a 2.10-M_Jup_ planet in a 1.43-day orbit around a G6V star. Rotational modulation of the light curves of WASP-46 and weak CaII H&K emission in its spectra show the star to be photospherically and chromospherically active.
- ID:
- ivo://CDS.VizieR/J/AJ/161/65
- Title:
- THYME. IV. 3 Exoplanets around TOI-451 B
- Short Name:
- J/AJ/161/65
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- Young exoplanets can offer insight into the evolution of planetary atmospheres, compositions, and architectures. We present the discovery of the young planetary system TOI-451 (TIC257605131, GaiaDR24844691297067063424). TOI-451 is a member of the 120Myr old Pisces-Eridanus stream (Psc-Eri). We confirm membership in the stream with its kinematics, its lithium abundance, and the rotation and UV excesses of both TOI451 and its wide-binary companion, TOI-451B (itself likely an M-dwarf binary). We identified three candidate planets transiting in the Transiting Exoplanet Survey Satellite data and followed up the signals with photometry from Spitzer and ground-based telescopes. The system comprises three validated planets at periods of 1.9, 9.2, and 16days, with radii of 1.9, 3.1, and 4.1 R, respectively. The host star is near-solar mass with V=11.0 and H=9.3 and displays an infrared excess indicative of a debris disk. The planets offer excellent prospects for transmission spectroscopy with the Hubble Space Telescope and the James Webb Space Telescope, providing the opportunity to study planetary atmospheres that may still be in the process of evolving.
- ID:
- ivo://CDS.VizieR/J/ApJ/692/L9
- Title:
- Tidal evolution of transiting extrasolar planets
- Short Name:
- J/ApJ/692/L9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We revisit the tidal stability of extrasolar systems harboring a transiting planet and demonstrate that, independently of any tidal model, none, but one (HAT-P-2b) of these planets has a tidal equilibrium state, which implies ultimately a collision of these objects with their host star. Consequently, conventional circularization and synchronization timescales cannot be defined because the corresponding states do not represent the endpoint of the tidal evolution. Using numerical simulations of the coupled tidal equations for the spin and orbital parameters of each transiting planetary system, we confirm these predictions and show that the orbital eccentricity and the stellar obliquity do not follow the usually assumed exponential relaxation but instead decrease significantly, eventually reaching a zero value only during the final runaway merging of the planet with the star. The only characteristic evolution timescale of all rotational and orbital parameters is the lifetime of the system, which crucially depends on the magnitude of tidal dissipation within the star. These results imply that the nearly circular orbits of transiting planets and the alignment between the stellar spin axis and the planetary orbit are unlikely to be due to tidal dissipation. Other dissipative mechanisms, for instance interactions with the protoplanetary disk, must be invoked to explain these properties.
- ID:
- ivo://CDS.VizieR/J/AJ/154/4
- Title:
- Times of transits and occultations of WASP-12b
- Short Name:
- J/AJ/154/4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new transit and occultation times for the hot Jupiter WASP-12b. The data are compatible with a constant period derivative: P.=-29+/-3ms/yr and P/P.=3.2Myr. However, it is difficult to tell whether we have observed orbital decay or a portion of a 14-year apsidal precession cycle. If interpreted as decay, the star's tidal quality parameter Q_star_ is about 2*10^5^. If interpreted as precession, the planet's Love number is 0.44+/-0.10. Orbital decay appears to be the more parsimonious model: it is favored by {Delta}_{chi}^2^_=5.5 despite having two fewer free parameters than the precession model. The decay model implies that WASP-12 was discovered within the final ~0.2% of its existence, which is an unlikely coincidence but harmonizes with independent evidence that the planet is nearing disruption. Precession does not invoke any temporal coincidence, but it does require some mechanism to maintain an eccentricity of {approx}0.002 in the face of rapid tidal circularization. To distinguish unequivocally between decay and precession will probably require a few more years of monitoring. Particularly helpful will be occultation timing in 2019 and thereafter.
- ID:
- ivo://CDS.VizieR/J/MNRAS/448/3608
- Title:
- Titius-Bode-based exoplanet predictions
- Short Name:
- J/MNRAS/448/3608
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyse a sample of multiple-exoplanet systems which contain at least three transiting planets detected by the Kepler mission ('Kepler multiples'). We use a generalized Titius-Bode relation to predict the periods of 228 additional planets in 151 of these Kepler multiples. These Titius-Bode-based predictions suggest that there are, on average, 2+/-1 planets in the habitable zone of each star. We estimate the inclination of the invariable plane for each system and prioritize our planet predictions by their geometric probability to transit. We highlight a short list of 77 predicted planets in 40 systems with a high geometric probability to transit, resulting in an expected detection rate of ~15%, ~3 times higher than the detection rate of our previous Titius-Bode-based predictions.
- ID:
- ivo://CDS.VizieR/J/AJ/153/258
- Title:
- 2007.5 to 2010.4 HST astrometry of HD 202206
- Short Name:
- J/AJ/153/258
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using Hubble Space Telescope Fine Guidance Sensor astrometry and previously published radial velocity measures, we explore the exoplanetary system HD202206. Our modeling results in a parallax, {pi}_abs_=21.96+/-0.12 milliseconds of arc, a mass for HD202206B of M_B_=0.089_-0.006_^+0.007M_{Sun}_, and a mass for HD202206c of M_c_=17.9_-1.8_^+2.9^M_Jup_. HD202206 is a nearly face-on G + M binary orbited by a brown dwarf. The system architecture that we determine supports past assertions that stability requires a 5:1 mean motion resonance (we find a period ratio, P_c_/P_B_=4.92+/-0.04) and coplanarity (we find a mutual inclination, {Phi}=6{deg}+/-2{deg}).
1238. TOI-269 b light curves
- ID:
- ivo://CDS.VizieR/J/A+A/650/A145
- Title:
- TOI-269 b light curves
- Short Name:
- J/A+A/650/A145
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We present the confirmation of a new sub-Neptune close to the transition between Super-Earths and sub-Neptunes transiting the M2 dwarf TOI-269. The exoplanet candidate is identified in multiple TESS sectors and is validated with high-precision spectroscopy from HARPS and ground-based photometric follow-up from ExTrA and LCO-CTIO. We determine mass, radius and bulk density of the exoplanet by jointly modeling both photometry and radial velocities with juliet. The transiting exoplanet has an orbital period of P=3.7 days, a radius of 2.77+/-0.12R_{Earth}_, and a mass of 8.8+/-1.4M_{Earth}_. Since TOI-269 b lies among the best targets of its category for atmospheric characterization, it would be interesting to probe the atmosphere of this exoplanet with transmission spectroscopy in order to compare it to other sub-Neptunes. With an eccentricity e=0.425^+0.082^_-0.086_, TOI-269 b has one of the highest eccentricity among exoplanets with periods less than 10 days. The star being likely a few Gyr old, this system does not appear to be dynamically young. We surmise TOI-269 b may have acquired a high eccentricity as it migrated inward through planet-planet interactions.
- ID:
- ivo://CDS.VizieR/J/A+A/656/A124
- Title:
- TOI-1201 RV and activity index
- Short Name:
- J/A+A/656/A124
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We present the discovery of a transiting mini-Neptune around TOI-1201, a relatively bright and moderately young early M dwarf (J~9.5mag, ~600-800Myr) in an equal-mass ~8arcsecond-wide binary system, using data from the Transiting Exoplanet Survey Satellite (TESS), along with follow-up transit observations. With an orbital period of 2.49d, TOI-1201~b is a warm mini-Neptune with a radius of R_b_=2.415+/-0.090R_{Earth}_. This signal is also present in the precise radial velocity measurements from CARMENES, confirming the existence of the planet and providing a planetary mass of M_b_=6.28+/-0.88M_{Earth}_ and, thus, an estimated bulk density of 2.45^+0.48^_-0.42_g/cm^3^. The spectroscopic observations additionally show evidence of a signal with a period of 19d and a long periodic variation of undetermined origin. In combination with ground-based photometric monitoring from WASP-South and ASAS-SN, we attribute the 19d signal to the stellar rotation period (P_rot_=19-23d), although we cannot rule out that the variation seen in photometry belongs to the visually close binary companion. We calculate precise stellar parameters for both TOI-1201 and its companion. The transiting planet is an excellent target for atmosphere characterization (the transmission spectroscopy metric is 97^+21^_-16_) with the upcoming James Webb Space Telescope. It is also feasible to measure its spin-orbit alignment via the Rossiter-McLaughlin effect using current state-of-the-art spectrographs with submeter per second radial velocity precision.
- ID:
- ivo://CDS.VizieR/J/A+A/649/A26
- Title:
- TOI-178 six transiting planets
- Short Name:
- J/A+A/649/A26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152_-0.070_^+0.073^ to 2.87_-0.13_^+0.14^ Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71-days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02^+0.28^_-0.23_ to 0.177^+0.055^_-0.061_ times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H=8.76mag, J=9.37mag, V=11.95mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes.