- ID:
- ivo://CDS.VizieR/J/A+A/587/A64
- Title:
- Physical properties of giant exoplanets
- Short Name:
- J/A+A/587/A64
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- While giant extrasolar planets have been studied for more than two decades now, there are still some open questions as to their dominant formation and migration processes, as well as to their atmospheric evolution in different stellar environments. In this paper, we study a sample of giant transiting exoplanets detected by the Kepler telescope with orbital periods up to 400 days. We first defined a sample of 129 giant-planet candidates that we followed up with the SOPHIE spectrograph (OHP, France) in a 6-year radial velocity campaign. This allowed us to unveil the nature of these candidates and to measure a false-positive rate of 54.6+/-6.5% for giant-planet candidates orbiting within 400 days of period. Based on a sample of confirmed or likely planets, we then derived the occurrence rates of giant planets in different ranges of orbital periods. The overall occurrence rate of giant planets within 400 days is 4.6+/-0.6%. We recovered, for the first time in the Kepler data, the different populations of giant planets reported by radial velocity surveys. Comparing these rates with other yields, we find that the occurrence rate of giant planets is lower only for hot Jupiters but not for the longer-period planets. We also derive a first measurement of the occurrence rate of brown dwarfs in the brown-dwarf desert with a value of 0.29+/-0.17%. Finally, we discuss the physical properties of the giant planets in our sample. We confirm that giant planets receiving moderate irradiation are not inflated, but we find that they are on average smaller than predicted by formation and evolution models. In this regime of low-irradiated giant planets, we find a possible correlation between their bulk density and the iron abundance of the host star, which needs more detections to be confirmed.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/742/L19
- Title:
- Physics of Kepler hot rocky planetary candidates
- Short Name:
- J/ApJ/742/L19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper outlines a simple approach to evaluate the atmospheric composition of hot rocky planets by assuming different types of planetary composition and using corresponding model calculations. To explore hot atmospheres above 1000K, we model the vaporization of silicate magma and estimate the range of atmospheric compositions according to the planet's radius and semi-major axis for the Kepler 2011 February data release. Our results show five atmospheric types for hot, rocky super-Earth atmospheres, strongly dependent on the initial composition and the planet's distance to the star. We provide a simple set of parameters that can be used to evaluate atmospheric compositions for current and future candidates provided by the Kepler mission and other searches.
- ID:
- ivo://CDS.VizieR/J/ApJS/222/14
- Title:
- Planetary candidates from 1st yr K2 mission
- Short Name:
- J/ApJS/222/14
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Kepler Space Telescope is currently searching for planets transiting stars along the ecliptic plane as part of its extended K2 mission. We processed the publicly released data from the first year of K2 observations (Campaigns 0, 1, 2, and 3) and searched for periodic eclipse signals consistent with planetary transits. Out of the 59174 targets that we searched, we detect 234 planetary candidates around 208 stars. These candidates range in size from gas giants to smaller than the Earth, and range in orbital periods from hours to over a month. We conducted initial reconnaissance spectroscopy of 68 of the brighter candidate host stars, and present high-resolution optical spectra for these stars. We make all of our data products, including light curves, spectra, and vetting diagnostics available to users online.
- ID:
- ivo://CDS.VizieR/J/A+A/605/A72
- Title:
- Planetary systems AMD-stability
- Short Name:
- J/A+A/605/A72
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present here in full detail the evolution of the angular momentum deficit (AMD) during collisions as it was described in (Laskar 2000, Physical Review Letters, 84, 3240). Since then, the AMD has been revealed to be a key parameter for the understanding of the outcome of planetary formation models. We define here the AMD-stability criterion that can be easily verified on a newly discovered planetary system. We show how AMD-stability can be used to establish a classification of the multiplanet systems in order to exhibit the planetary systems that are long-term stable because they are AMD-stable, and those that are AMD- unstable which then require some additional dynamical studies to conclude on their stability. The AMD-stability classification is applied to the 131 multiplanet systems from The Extrasolar Planet Encyclopaedia database (exoplanet.eu) for which the orbital elements are sufficiently well known.
- ID:
- ivo://CDS.VizieR/J/A+A/538/A112
- Title:
- Planetary transit candidates in CoRoT LRa01 field
- Short Name:
- J/A+A/538/A112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose lightcurves have transit-like features. An extensive analytical and observational follow-up effort is undertaken to classify these candidates.
- ID:
- ivo://CDS.VizieR/J/A+A/539/A14
- Title:
- Planetary transit candidates in CoRoT SRc01 field
- Short Name:
- J/A+A/539/A14
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The space mission CoRoT is devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. We present the list of planetary transit candidates detected in the first short run observed by CoRoT that targeted SRc01, towards the Galactic center in the direction of Aquila, which lasted from April to May 2007.
- ID:
- ivo://CDS.VizieR/J/ApJ/705/1226
- Title:
- Planet-bearing stars in Spitzer
- Short Name:
- J/ApJ/705/1226
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the MIPS camera on the Spitzer Space Telescope, we have searched for debris disks around 104 stars known from radial velocity studies to have one or more planets. Combining this new data with 42 already published observations of planet-bearing stars, we find that 14 of the 146 systems have IR excess at 24 and/or 70um. Only one star, HD 69830, has IR excess exclusively at 24um, indicative of warm dust in the inner system analogous to that produced by collisions in the solar system's asteroid belt. For the other 13 stars with IR excess the emission is stronger at 70um, consistent with cool dust (<100K) located beyond 10AU, well outside of the orbital location of the known planets.
- ID:
- ivo://CDS.VizieR/J/ApJS/226/7
- Title:
- Planet candidates discovered using K2's 1st yr
- Short Name:
- J/ApJS/226/7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 197 planet candidates discovered using data from the first year of the NASA K2 mission (Campaigns 0-4), along with the results of an intensive program of photometric analyses, stellar spectroscopy, high-resolution imaging, and statistical validation. We distill these candidates into sets of 104 validated planets (57 in multi-planet systems), 30 false positives, and 63 remaining candidates. Our validated systems span a range of properties, with median values of R_P_=2.3R_{Earth}_, P=8.6 days, Teff=5300K, and Kp=12.7mag. Stellar spectroscopy provides precise stellar and planetary parameters for most of these systems. We show that K2 has increased by 30% the number of small planets known to orbit moderately bright stars (1-4R_{Earth}_, Kp=9-13mag). Of particular interest are 76 planets smaller than 2R_{Earth}_, 15 orbiting stars brighter than Kp=11.5mag, 5 receiving Earth-like irradiation levels, and several multi-planet systems-including 4 planets orbiting the M dwarf K2-72 near mean-motion resonances. By quantifying the likelihood that each candidate is a planet we demonstrate that our candidate sample has an overall false positive rate of 15%-30%, with rates substantially lower for small candidates (<2R_{Earth}_) and larger for candidates with radii >8R_{Earth}_ and/or with P<3days. Extrapolation of the current planetary yield suggests that K2 will discover between 500 and 1000 planets in its planned four-year mission, assuming sufficient follow-up resources are available. Efficient observing and analysis, together with an organized and coherent follow-up strategy, are essential for maximizing the efficacy of planet-validation efforts for K2, TESS, and future large-scale surveys.
- ID:
- ivo://CDS.VizieR/J/AJ/152/187
- Title:
- Planet occurrence and stellar metallicity for KOIs
- Short Name:
- J/AJ/152/187
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Host star metallicity provides a measure of the conditions in protoplanetary disks at the time of planet formation. Using a sample of over 20000 Kepler stars with spectroscopic metallicities from the LAMOST survey, we explore how the exoplanet population depends on host star metallicity as a function of orbital period and planet size. We find that exoplanets with orbital periods less than 10 days are preferentially found around metal-rich stars ([Fe/H]{simeq}0.15+/-0.05dex). The occurrence rates of these hot exoplanets increases to ~30% for super-solar metallicity stars from ~10% for stars with a sub-solar metallicity. Cooler exoplanets, which reside at longer orbital periods and constitute the bulk of the exoplanet population with an occurrence rate of >~90%, have host star metallicities consistent with solar. At short orbital periods, P<10days, the difference in host star metallicity is largest for hot rocky planets (<1.7R_{Earth}_), where the metallicity difference is [Fe/H]{simeq}0.25+/-0.07dex. The excess of hot rocky planets around metal-rich stars implies they either share a formation mechanism with hot Jupiters, or trace a planet trap at the protoplanetary disk inner edge, which is metallicity dependent. We do not find statistically significant evidence for a previously identified trend that small planets toward the habitable zone are preferentially found around low-metallicity stars. Refuting or confirming this trend requires a larger sample of spectroscopic metallicities.
- ID:
- ivo://CDS.VizieR/J/ApJ/814/130
- Title:
- Planet occurrence rates calculated for KOIs
- Short Name:
- J/ApJ/814/130
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0-2.8R_{Earth}_) than main-sequence FGK stars, but two times fewer Neptune-sized and larger (>2.8R_{Earth}_) planets. We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass-radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4M_{Earth}_ in F stars to 5M_{Earth}_in G and K stars to 7M_{Earth}_ in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease toward lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks --either through type-I migration or radial drift of dust grains-- that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets.