- ID:
- ivo://CDS.VizieR/J/ApJ/756/185
- Title:
- Kepler TTVs. V. Metrics catalog
- Short Name:
- J/ApJ/756/185
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during the first sixteen months of Kepler observations. We present 39 strong TTV candidates based on long-term trends (2.8% of suitable data sets). We present another 136 weaker TTV candidates (9.8% of suitable data sets) based on the excess scatter of TTV measurements about a linear ephemeris. We anticipate that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We find that the occurrence rate of planet candidates that show TTVs is significantly increased (~68%) for planet candidates transiting stars with multiple transiting planet candidates when compared to planet candidates transiting stars with a single transiting planet candidate.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/787/47
- Title:
- 106 Kepler ultra-short-period planets
- Short Name:
- J/ApJ/787/47
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a survey aimed at discovering and studying transiting planets with orbital periods shorter than one day (ultra-short-period, or USP, planets), using data from the Kepler spacecraft. We computed Fourier transforms of the photometric time series for all 200000 target stars, and detected transit signals based on the presence of regularly spaced sharp peaks in the Fourier spectrum. We present a list of 106 USP candidates, of which 18 have not previously been described in the literature. This list of candidates increases the number of planet candidates with orbital periods shorter than about six hours from two to seven. In addition, among the objects we studied, there are 26 USP candidates that had been previously reported in the literature which do not pass our various tests. All 106 of our candidates have passed several standard tests to rule out false positives due to eclipsing stellar systems. A low false positive rate is also implied by the relatively high fraction of candidates for which more than one transiting planet signal was detected. By assuming these multi-transit candidates represent coplanar multi-planet systems, we are able to infer that the USP planets are typically accompanied by other planets with periods in the range 1-50 days, in contrast with hot Jupiters which very rarely have companions in that same period range. Another clear pattern is that almost all USP planets are smaller than 2 R_{earth}_, possibly because gas giants in very tight orbits would lose their atmospheres by photoevaporation when subject to extremely strong stellar irradiation. Based on our survey statistics, USP planets exist around approximately (0.51+/-0.07)% of G-dwarf stars, and (0.83+/-0.18)% of K-dwarf stars.
- ID:
- ivo://CDS.VizieR/J/A+A/594/A100
- Title:
- K2 new planetary and EB candidates
- Short Name:
- J/A+A/594/A100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- With only two functional reaction wheels, Kepler cannot maintain stable pointing at its original target field and has entered a new mode of observation called K2. We describe a new pipeline to reduce K2 pixel files into light curves that are later searched for transit like features. Our method is based on many years of experience in planet hunting for the CoRoT mission. Owing to the unstable pointing, K2 light curves present systematics that are correlated with the target position in the ccd. Therefore, our pipeline also includes a decorrelation of this systematic noise. Our pipeline is optimised for bright stars for which spectroscopic follow-up is possible. We achieve a maximum precision on 6 hours of 6 ppm. The decorrelated light curves are searched for transits with an adapted version of the CoRoT alarm pipeline. We present 172 planetary candidates and 327 eclipsing binary candidates from campaigns 1, 2, 3, 4, 5, and 6 of K2. Both the planetary candidates and eclipsing binary candidates lists are made public to promote follow-up studies. The light curves will also be available to the community.
- ID:
- ivo://CDS.VizieR/J/AJ/153/117
- Title:
- KOIs companions from high-resolution imaging
- Short Name:
- J/AJ/153/117
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on 176 close (<2'') stellar companions detected with high-resolution imaging near 170 hosts of Kepler Objects of Interest (KOIs). These Kepler targets were prioritized for imaging follow-up based on the presence of small planets, so most of the KOIs in these systems (176 out of 204) have nominal radii <6R_{Earth}_. Each KOI in our sample was observed in at least two filters with adaptive optics, speckle imaging, lucky imaging, or the Hubble Space Telescope. Multi-filter photometry provides color information on the companions, allowing us to constrain their stellar properties and assess the probability that the companions are physically bound. We find that 60%-80% of companions within 1'' are bound, and the bound fraction is >90% for companions within 0.5''; the bound fraction decreases with increasing angular separation. This picture is consistent with simulations of the binary and background stellar populations in the Kepler field. We also reassess the planet radii in these systems, converting the observed differential magnitudes to a contamination in the Kepler bandpass and calculating the planet radius correction factor, X_R_=R_p_(true)/R_p_(single). Under the assumption that planets in bound binaries are equally likely to orbit the primary or secondary, we find a mean radius correction factor for planets in stellar multiples of X_R_=1.65. If stellar multiplicity in the Kepler field is similar to the solar neighborhood, then nearly half of all Kepler planets may have radii underestimated by an average of 65%, unless vetted using high-resolution imaging or spectroscopy.
- ID:
- ivo://CDS.VizieR/J/ApJ/821/47
- Title:
- KOI transit probabilities of multi-planet syst.
- Short Name:
- J/ApJ/821/47
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NASA's Kepler Space Telescope has successfully discovered thousands of exoplanet candidates using the transit method, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, it is essential to account for the unique geometric probabilities of detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods, we have constructed an efficient, semi-analytical algorithm called the Computed Occurrence of Revolving Bodies for the Investigation of Transiting Systems (CORBITS), which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets can be observed to transit. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere. The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparisons with Monte Carlo simulations. We use CORBITS to show that the present solar system would only show a maximum of three transiting planets, but that this varies over time due to dynamical evolution. We also used CORBITS to geometrically debias the period ratio and mutual Hill sphere distributions of Kepler's multi-transiting planet candidates, which results in shifting these distributions toward slightly larger values. In an Appendix, we present additional semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability that two planets will transit each other (planet-planet occultation, relevant to transiting circumbinary planets) and the probability that this transit occurs simultaneously as they transit their star.
- ID:
- ivo://CDS.VizieR/J/AJ/153/208
- Title:
- LCES HIRES/Keck radial velocity Exoplanet Survey
- Short Name:
- J/AJ/153/208
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe a 20 year survey carried out by the Lick-Carnegie Exoplanet Survey Team (LCES), using precision radial velocities from HIRES on the Keck I telescope to find and characterize extrasolar planetary systems orbiting nearby F, G, K, and M dwarf stars. We provide here 60949 precision radial velocities for 1624 stars contained in that survey. We tabulate a list of 357 significant periodic signals that are of constant period and phase, and not coincident in period and/or phase with stellar activity indices. These signals are thus strongly suggestive of barycentric reflex motion of the star induced by one or more candidate exoplanets in Keplerian motion about the host star. Of these signals, 225 have already been published as planet claims, 60 are classified as significant unpublished planet candidates that await photometric follow-up to rule out activity-related causes, and 54 are also unpublished, but are classified as "significant" signals that require confirmation by additional data before rising to classification as planet candidates. Of particular interest is our detection of a candidate planet with Msin(i)=3.8M_{Earth}_, and P=9.9 days orbiting Lalande 21185, the fourth-closest main-sequence star to the Sun. For each of our exoplanetary candidate signals, we provide the period and semi-amplitude of the Keplerian orbital fit, and a likelihood ratio estimate of its statistical significance. We also tabulate 18 Keplerian-like signals that we classify as likely arising from stellar activity.
- ID:
- ivo://CDS.VizieR/J/A+A/562/A92
- Title:
- Li abundance in solar analogues
- Short Name:
- J/A+A/562/A92
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600-5900K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs.
- ID:
- ivo://CDS.VizieR/J/MNRAS/403/1368
- Title:
- Li abundances & vsini for star-planet systems
- Short Name:
- J/MNRAS/403/1368
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We determine Li abundances and vsini values from new spectra of 53 stars with Doppler-detected planets not included in our previous papers in this series. We also examine two sets of stars without detected planets, which together serve as our comparison sample. Using the method of comparison of Li abundances and vsini values between two sets of stars we introduced in Gonzalez, we confirm that these two quantities are smaller among stars with planets (SWPs) compared to stars without detected planets near the solar temperature. The transition from low to high Li abundance among SWPs occurs near 5850K, a revision of about 50K from our previous determination. The transition from low to high vsini occurs near 6000K, but this temperature is not as well constrained.
- ID:
- ivo://CDS.VizieR/J/ApJ/756/46
- Title:
- Lithium abundances in HIP stars
- Short Name:
- J/ApJ/756/46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We derive atmospheric parameters and lithium abundances for 671 stars and include our measurements in a literature compilation of 1381 dwarf and subgiant stars. First, a "lithium desert" in the effective temperature (T_eff_) versus lithium abundance (A_Li_) plane is observed such that no stars with T_eff_=~6075K and A_Li_=~1.8 are found. We speculate that most of the stars on the low A_Li_ side of the desert have experienced a short-lived period of severe surface lithium destruction as main-sequence or subgiant stars. Next, we search for differences in the lithium content of thin-disk and thick-disk stars, but we find that internal processes have erased from the stellar photospheres their possibly different histories of lithium enrichment. Nevertheless, we note that the maximum lithium abundance of thick-disk stars is nearly constant from [Fe/H]=-1.0 to -0.1, at a value that is similar to that measured in very metal-poor halo stars (A_Li_=~2.2). Finally, differences in the lithium abundance distribution of known planet-host stars relative to otherwise ordinary stars appear when restricting the samples to narrow ranges of T_eff_ or mass, but they are fully explained by age and metallicity biases. We confirm the lack of a connection between low lithium abundance and planets. However, we find that no low A_Li_ planet-hosts are found in the desert T_eff_ window. Provided that subtle sample biases are not responsible for this observation, this suggests that the presence of gas giant planets inhibit the mechanism responsible for the lithium desert.
- ID:
- ivo://CDS.VizieR/J/ApJ/724/154
- Title:
- Lithium abundances in stars with planets
- Short Name:
- J/ApJ/724/154
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This work presents a homogeneous determination of lithium abundances in a large sample of giant-planet-hosting stars (N=117) and a control sample of disk stars without detected planets (N=145). The lithium abundances were derived using a detailed profile fitting of the LiI doublet at 6708{AA} in LTE. The planet-hosting and comparison stars were chosen to have significant overlap in their respective physical properties, including effective temperatures, luminosities, masses, metallicities, and ages. The combination of uniform data and homogeneous analysis with well-selected samples makes this study well suited to probe for possible differences in the lithium abundances found in planet-hosting stars. An overall comparison between the two samples reveals no obvious differences between stars with and without planets. A closer examination of the behavior of the Li abundances over a narrow range of effective temperature (5700K<=T_eff_<=5850K) indicates subtle differences between the two stellar samples; this temperature range is particularly sensitive to various physical processes that can deplete lithium.