- ID:
- ivo://CDS.VizieR/J/A+A/549/A109
- Title:
- HARPS XXXI. The M-dwarf sample
- Short Name:
- J/A+A/549/A109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Searching for planets around stars with different masses helps us to assess the outcome of planetary formation for different initial conditions. The low-mass M dwarfs are also the most frequent stars in our Galaxy and potentially therefore, the most frequent planet hosts. We present observations of 102 southern nearby M dwarfs, using a fraction of our guaranteed time on the ESO/HARPS spectrograph. We observed for 460 h and gathered 1965 precise (~1-3m/s) radial velocities (RVs), spanning the period from Feb. 11, 2003 to Apr. 1, 2009.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/604/L4
- Title:
- HAT-P-4 and TYC 2569-744-1 abundances and spectra
- Short Name:
- J/A+A/604/L4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We explore condensation temperature Tc trends and the Li content in the binary system HAT-P-4, to study the possible chemical signature of planet formation. The star HAT-P-4 hosts a hot Jupiter planet detected by transits, while its stellar companion does not have any detected planets. We derived the fundamental parameters and abundances using the differential method. HAT-P-4 is found to be about 0.1dex more metal rich than its companion; it is enhanced in refractory elements and presents a higher Lithium content. We propose a scenario of a possible rocky planet engulfment in HAT-P-4, which explains the higher metallicity, the higher Li content, and the negative Tc trend we detected.
- ID:
- ivo://CDS.VizieR/J/AJ/147/128
- Title:
- HAT-P-44, HAT-P-45, and HAT-P-46 follow-up
- Short Name:
- J/AJ/147/128
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V=13.2, 12.8, and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.35, 0.89, and 0.49M_J_, and radii of 1.24, 1.43, and 1.28R_J_. The stellar hosts have masses of 0.94, 1.26, and 1.28M_{sun}_. Each system shows significant systematic variations in its residual radial velocities, indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, including the transiting component, with the outer planet having a period of 872 days, eccentricity of 0.494+/-0.081, and a minimum mass of 4.0M_J_. Due to aliasing we cannot rule out alternative solutions for the outer planet having a period of 220 days or 438 days. For HAT-P-45, at present there is not enough data to justify the additional free parameters included in a multi-planet model; in this case a single-planet solution is preferred, but the required jitter of 22.5+/-6.3m/s is relatively high for a star of this type. For HAT-P-46 the preferred solution includes a second planet having a period of 78 days and a minimum mass of 2.0M_J_, however the preference for this model over a single-planet model is not very strong. While substantial uncertainties remain as to the presence and/or properties of the outer planetary companions in these systems, the inner transiting planets are well characterized with measured properties that are fairly robust against changes in the assumed models for the outer planets. Continued radial velocity monitoring is necessary to fully characterize these three planetary systems, the properties of which may have important implications for understanding the formation of hot Jupiters.
- ID:
- ivo://CDS.VizieR/J/A+A/561/A7
- Title:
- High-precision abundances for stars with planets
- Short Name:
- J/A+A/561/A7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Elemental abundance studies of solar twin stars suggest that the solar chemical composition contains signatures of the formation of terrestrial planets in the solar system, namely small but significant depletions of the refractory elements. To test this hypothesis, we study stars which, compared to solar twins, have less massive convective envelopes (therefore increasing the amplitude of the predicted effect) or are, arguably, more likely to host planets (thus increasing the frequency of signature detections). We measure relative atmospheric parameters and elemental abundances of a late-F type dwarf sample (52 stars) and a sample of metal-rich solar analogs (59 stars). We detect refractory-element depletions with amplitudes up to about 0.15dex. The distribution of depletion amplitudes for stars known to host gas giant planets is not different from that of the rest of stars. The maximum amplitude of depletion increases with effective temperature from 5650K to 5950K, while it appears to be constant for warmer stars (up to 6300K). The depletions observed in solar twin stars have a maximum amplitude that is very similar to that seen here for both of our samples. Gas giant planet formation alone cannot explain the observed distributions of refractory-element depletions, leaving the formation of rocky material as a more likely explanation of our observations. More rocky material is necessary to explain the data of solar twins than metal-rich stars, and less for warm stars. However, the sizes of the stars' convective envelopes at the time of planet formation could be regulating these amplitudes. Our results could be explained if disk lifetimes were shorter in more massive stars, as independent observations indeed seem to suggest.
- ID:
- ivo://CDS.VizieR/J/A+A/589/A58
- Title:
- High-resolution imaging of TEP systems (HITEP)
- Short Name:
- J/A+A/589/A58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Wide binaries are a potential pathway for the formation of hot Jupiters. The binary fraction among host stars is an important discriminator between competing formation theories, but has not been well characterised. Additionally, contaminating light from unresolved stars can significantly affect the accuracy of photometric and spectroscopic measurements in studies of transiting exoplanets. We observed 101 transiting exoplanet host systems in the Southern hemisphere in order to create a homogeneous catalogue of both bound companion stars and contaminating background stars, in an area of the sky where transiting exoplanetary systems have not been systematically searched for stellar companions. We investigate the binary fraction among the host stars in order to test theories for the formation of hot Jupiters. Lucky imaging observations from the Two Colour Instrument on the Danish 1.54m telescope at La Silla were used to search for previously unresolved stars at small angular separations. The separations and relative magnitudes of all detected stars were measured. For 12 candidate companions to 10 host stars, previous astrometric measurements were used to evaluate how likely the companions are to be physically associated. We provide measurements of 499 candidate companions within 20 arcseconds of our sample of 101 planet host stars. 51 candidates are located within 5 arcseconds of a host star, and we provide the first published measurements for 27 of these. Calibrations for the plate scale and colour performance of the Two Colour Instrument are presented. We find that the overall multiplicity rate of the host stars is 38+17%, consistent with the rate among solar-type stars in our sensitivity range, suggesting that planet formation does not preferentially occur in long period binaries compared to a random sample of field stars. Long period stellar companions (P>10yr) appear to occur independently of short period companions, and so the population of close-in stellar companions is unconstrained by our study.
- ID:
- ivo://CDS.VizieR/J/ApJ/785/126
- Title:
- HIRES radial velocity measurements
- Short Name:
- J/ApJ/785/126
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper we search for distant massive companions to known transiting gas giant planets that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 planets obtained using the Keck HIRES instrument, and find statistically significant accelerations in fifteen systems. Six of these systems have no previously reported accelerations in the published literature: HAT-P-10, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 adaptive optics (AO) imaging data to place constraints on the allowed masses and orbital periods of the companions responsible for the detected accelerations. The estimated masses of the companions range between 1-500 M_Jup_, with orbital semi-major axes typically between 1-75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the transiting planets in these systems, making them candidates for influencing the orbital evolution of the inner gas giant. We estimate a total occurrence rate of 51%+/-10% for companions with masses between 1-13 M_Jup_ and orbital semi-major axes between 1-20 AU in our sample. We find no statistically significant difference between the frequency of companions to transiting planets with misaligned or eccentric orbits and those with well-aligned, circular orbits. We combine our expanded sample of radial velocity measurements with constraints from transit and secondary eclipse observations to provide improved measurements of the physical and orbital characteristics of all of the planets included in our survey.
- ID:
- ivo://CDS.VizieR/J/A+A/610/A20
- Title:
- HITEP. II. Transiting exoplanets imaging
- Short Name:
- J/A+A/610/A20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of the second part of a high resolution imaging survey of hot Jupiter host stars. We search for binary companions to known transiting exoplanet host stars, in order to determine the multiplicity properties of hot Jupiter host stars. We also search for and characterise unassociated stars along the line of sight, allowing photometric and spectroscopic observations of the planetary system to be corrected for contaminating light.
- ID:
- ivo://CDS.VizieR/J/ApJ/788/39
- Title:
- Hot Jupiter exoplanets host stars EW and abundances
- Short Name:
- J/ApJ/788/39
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The relative abundances of carbon and oxygen have long been recognized as fundamental diagnostics of stellar chemical evolution. Now, the growing number of exoplanet observations enable estimation of these elements in exoplanetary atmospheres. In hot Jupiters, the C/O ratio affects the partitioning of carbon in the major observable molecules, making these elements diagnostic of temperature structure and composition. Here we present measurements of carbon and oxygen abundances in 16 stars that host transiting hot Jupiter exoplanets, and we compare our C/O ratios to those measured in larger samples of host stars, as well as those estimated for the corresponding exoplanet atmospheres. With standard stellar abundance analysis we derive stellar parameters as well as [C/H] and [O/H] from multiple abundance indicators, including synthesis fitting of the [O I] {lambda}6300 line and non-LTE corrections for the O I triplet. Our results, in agreement with recent suggestions, indicate that previously measured exoplanet host star C/O ratios may have been overestimated. The mean transiting exoplanet host star C/O ratio from this sample is 0.54 (C/O_{sun}_=0.54), versus previously measured C/O_host star_ means of ~0.65-0.75. We also observe the increase in C/O with [Fe/H] expected for all stars based on Galactic chemical evolution; a linear fit to our results falls slightly below that of other exoplanet host star studies but has a similar slope. Though the C/O ratios of even the most-observed exoplanets are still uncertain, the more precise abundance analysis possible right now for their host stars can help constrain these planets' formation environments and current compositions.
- ID:
- ivo://CDS.VizieR/J/AJ/152/108
- Title:
- i filter photometry for HATS-25 through HATS-30
- Short Name:
- J/AJ/152/108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report six new inflated hot Jupiters (HATS-25b through HATS-30b) discovered using the HATSouth global network of automated telescopes. The planets orbit stars with V magnitudes in the range of ~12-14 and have masses in the largely populated 0.5M_J_--0.7M_J_ region of parameter space but span a wide variety of radii, from 1.17R_J_ to 1.75R_J_. HATS-25b, HATS-28b, HATS-29b, and HATS-30b are typical inflated hot Jupiters (R_p_=1.17--1.26R_J_) orbiting G-type stars in short period (P=3.2-4.6 days) orbits. However, HATS-26b (R_p_=1.75R_J_, P=3.3024days) and HATS-27b (R_p_=1.50R_J_, P=4.6370days) stand out as highly inflated planets orbiting slightly evolved F stars just after and in the turn-off points, respectively, which are among the least dense hot Jupiters, with densities of 0.153g/cm^3^ and 0.180g/cm^3^, respectively. All the presented exoplanets but HATS-27b are good targets for future atmospheric characterization studies, while HATS-27b is a prime target for Rossiter-McLaughlin monitoring in order to determine its spin-orbit alignment given the brightness (V=12.8) and stellar rotational velocity (vsini~9.3km/s) of the host star. These discoveries significantly increase the number of inflated hot Jupiters known, contributing to our understanding of the mechanism(s) responsible for hot Jupiter inflation.
- ID:
- ivo://CDS.VizieR/J/ApJ/767/95
- Title:
- Improved stellar parameters of smallest KIC stars
- Short Name:
- J/ApJ/767/95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use the optical and near-infrared photometry from the Kepler Input Catalog to provide improved estimates of the stellar characteristics of the smallest stars in the Kepler target list. We find 3897 dwarfs with temperatures below 4000K, including 64 planet candidate host stars orbited by 95 transiting planet candidates. We refit the transit events in the Kepler light curves for these planet candidates and combine the revised planet/star radius ratios with our improved stellar radii to revise the radii of the planet candidates orbiting the cool target stars. We then compare the number of observed planet candidates to the number of stars around which such planets could have been detected in order to estimate the planet occurrence rate around cool stars. We find that the occurrence rate of 0.5-4R_{oplus}_ planets with orbital periods shorter than 50 days is 0.90_0.03_^0.04^ planets per star. The occurrence rate of Earth-size (0.5-1.4R_{oplus}_) planets is constant across the temperature range of our sample at 0.51_0.05_^0.06^ Earth-size planets per star, but the occurrence of 1.4-4R_{oplus}_ planets decreases significantly at cooler temperatures. Our sample includes two Earth-size planet candidates in the habitable zone, allowing us to estimate that the mean number of Earth-size planets in the habitable zone is 0.15_0.06_^0.13^ planets per cool star. Our 95% confidence lower limit on the occurrence rate of Earth-size planets in the habitable zones of cool stars is 0.04 planets per star. With 95% confidence, the nearest transiting Earth-size planet in the habitable zone of a cool star is within 21pc. Moreover, the nearest non-transiting planet in the habitable zone is within 5pc with 95% confidence.