- ID:
- ivo://CDS.VizieR/J/A+A/620/A52
- Title:
- DIB properties in lines of sight to M17
- Short Name:
- J/A+A/620/A52
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Diffuse interstellar bands (DIBs) are broad absorption features measured in sightlines probing the diffuse interstellar medium. Although large carbon-bearing molecules have been proposed as the carriers producing DIBs, their identity remains unknown. DIBs make an important contribution to the extinction curve; the sightline. to the young massive star-forming region M17 shows anomalous extinction in the sense that the total-to-selective extinction parameter (R_V_) differs significantly from the average Galactic value and may reach values R_V_>4. Anomalous DIBs have been reported in the sightline towards Herschel 36 (R_V_=5.5), in the massive star-forming region M8. Higher values of R_V_ have been associated with a relatively higher fraction of large dust grains in the line of sight. Given the high R_V_ values, we investigate whether the DIBs in sightlines towards young OB stars in M17 show a peculiar behaviour. We measure the properties of the most prominent DIBs in M17 and study these as a function of E(B-V) and R_V_. We also analyse the gaseous and dust components contributing to the interstellar extinction. The DIB strengths in M17 concur with the observed relations between DIB equivalent width and reddening E(B-V) in Galactic sightlines. For several DIBs we discover a linear relation between the normalised DIB strength EW/A_V_ and R_V_^-1^. These trends suggest two groups of DIBs: (i) a group of ten moderately strong DIBs that show a sensitivity to changes in R_V_ that is modest and proportional to DIB strength, and (ii) a group of four very strong DIBs that react sensitively and to a similar degree to changes in R_V_, but in a way that does not appear to depend on DIB strength. DIB behaviour as a function of reddening is not peculiar in sightlines to M17. Also, we do not detect anomalous DIB profiles like those seen in Herschel 36. DIBs are stronger, per unit visual extinction, in sightlines characterised by a lower value of R_V_, i.e. those sightlines that contain a relatively large fraction of small dust particles. New relations between extinction normalised DIB strengths, EW/A_V_, and R_V_ support the idea that DIB carriers and interstellar dust are intimately connected. Furthermore, given the distinct behaviour of two groups of DIBs, different types of carriers do not necessarily relate to the dust grains in a similar way.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/625/A49
- Title:
- Dimming event of RW Aurigae A
- Short Name:
- J/A+A/625/A49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- RW Aur A is a classical T Tauri star that has suddenly undergone three major dimming events since 2010. The reason for these dimming events is still not clear. The two epochs of observations uploaded here are on the deep dimming events (2015) and immediate after the dimmin event (2016).
- ID:
- ivo://CDS.VizieR/J/A+A/624/A87
- Title:
- Discovery of a resolved disk around Wray 15-788
- Short Name:
- J/A+A/624/A87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Protoplanetary disks are the birth environments of planetary systems. Therefore, the study of young, circumstellar environments is essential to understanding the processes taking place in planet formation and the evolution of planetary systems. We detect and characterize circumstellar disks and potential companions around solar-type, pre-main sequence stars in the Scorpius-Centaurus association (Sco-Cen). As part of our ongoing survey we carried out high-contrast imaging with VLT/SPHERE/IRDIS to obtain polarized and total intensity images of the young (11^+16^_-7_)Myr old) K3IV star Wray 15-788 within the Lower Centaurus Crux subgroup of Sco-Cen. For the total intensity images, we remove the stellar halo via an approach based on reference star differential imaging in combination with principal component analysis. Both total intensity and polarimetric data resolve a disk around the young, solar-like Sco-Cen member Wray 15-788. Modeling of the stellar spectral energy distribution suggests that this is protoplanetary disk at a transition stage. We detect a bright outer ring at a projected separation of ~370mas (~56au), hints of inner substructures at ~170mas (~28au), and a gap in between. Within a position angle range of only 60{deg}<{phi}<240{deg}, we are confident at the 5{sigma} level that we detect actual scattered light flux from the outer ring of the disk; the remaining part is indistinguishable from background noise. For the detected part of the outer ring we determine a disk inclination of i=21{deg}+/-6{deg} and a position angle of {varphi}=76{deg}+/-16{deg}. Furthermore, we find that Wray 15-788 is part of a binary system with the A2V star HD 98363 at a separation of ~50arcsec (~6900,au). The detection of only half of the outer ring might be due to shadowing by a misaligned inner disk. A potential substellar companion can cause the misalignment of the inner structures and can be responsible for clearing the detected gap from scattering material.However, we cannot rule out the possibility of a non-detection due to our limited signal-to-noise ratio, combined with brightness azimuthal asymmetry. From our data we can exclude companions more massive than 10M_{jup}_ within the gap at a separation of ~230mas (~35au). Additional data are required to characterize the disk's peculiar morphology and to set tighter constraints on the potential perturber's orbital parameters and mass.
- ID:
- ivo://CDS.VizieR/J/A+A/648/A73
- Title:
- Discovery of the directly imaged planet YSES 2b
- Short Name:
- J/A+A/648/A73
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To understand the origin and formation pathway of wide-orbit gas giant planets, it is necessary to expand the limited sample of these objects. The mass of exoplanets derived with spectrophotometry, however, varies strongly as a function of the age of the system and the mass of the primary star. By selecting stars with similar ages and masses, the Young Suns Exoplanet Survey (YSES) aims to detect and characterize planetary-mass companions to solar-type host stars in the Scorpius-Centaurus association. Our survey is carried out with VLT/SPHERE with short exposure sequences on the order of 5-min per star per filter. The subtraction of the stellar point spread function (PSF) is based on reference star differential imaging (RDI) using the other targets (with similar colors and magnitudes) in the survey in combination with principal component analysis. Two astrometric epochs that are separated by more than one year are used to confirm co-moving companions by proper motion analysis. We report the discovery of YSES 2b, a co-moving, planetary-mass companion to the K1 star YSES 2 (TYC 8984-2245-1, 2MASS J11275535-6626046). The primary has a Gaia EDR3 distance of 110pc, and we derive a revised mass of 1.1M_{sun}_ and an age of approximately 14Myr. We detect the companion in two observing epochs southwest of the star at a position angle of 205{deg} and with a separation of ~1.05", which translates to a minimum physical separation of 115au at the distance of the system. Photometric measurements in the H and Ks bands are indicative of a late L spectral type, similar to the innermost planets around HR 8799. We derive a photometric planet mass of 6.3^+1.6^_-0.9_M_{Jup}_ using AMES-COND and AMES-dusty evolutionary models; this mass corresponds to a mass ratio of q=(0.5+/-0.1)% with the primary. This is the lowest mass ratio of a direct imaging planet around a solar-type star to date. We discuss potential formation mechanisms and find that the current position of the planet is compatible with formation by disk gravitational instability, but its mass is lower than expected from numerical simulations. Formation via core accretion must have occurred closer to the star, yet we do not find evidence that supports the required outward migration, such as via scattering off another undiscovered companion in the system. We can exclude additional companions with masses greater than 13M_{Jup}_ in the full field of view of the detector (0.15"<{rho}<5.50"), at 0.5" we can rule out further objects that are more massive than 6M_{Jup}_, and for projected separations {rho}>2arcsec we are sensitive to planets with masses as low as 2M_{Jup}_. YSES 2b is an ideal target for follow-up observations to further the understanding of the physical and chemical formation mechanisms of wide-orbit Jovian planets. The YSES strategy of short snapshot observations (<=5min) and PSF subtraction based on a large reference library proves to be extremely efficient and should be considered for future direct imaging surveys.
- ID:
- ivo://CDS.VizieR/J/ApJ/773/135
- Title:
- Disk-bearing stars in Cygnus OB2
- Short Name:
- J/ApJ/773/135
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation of stars in massive clusters is one of the main modes of the star formation process. However, the study of massive star-forming regions is hampered by their typically large distances to the Sun. One exception to this is the massive star-forming region Cygnus OB2 in the Cygnus X region, at the distance of ~1400pc. Cygnus OB2 hosts very rich populations of massive and low-mass stars, being the best target in our Galaxy to study the formation of stars, circumstellar disks, and planets in the presence of massive stars. In this paper, we combine a wide and deep set of photometric data, from the r band to 24{mu}m, in order to select the disk-bearing population of stars in Cygnus OB2 and identify the class I, class II, and stars with transition and pre-transition disks. We selected 1843 sources with infrared excesses in an area of 1{deg}x1{deg} centered on Cyg OB2 in several evolutionary stages: 8.4% class I, 13.1% flat-spectrum sources, 72.9% class II, 2.3% pre-transition disks, and 3.3% transition disks. The spatial distribution of these sources shows a central cluster surrounded by an annular overdensity and some clumps of recent star formation in the outer region. Several candidate subclusters are identified, both along the overdensity and in the rest of the association.
- ID:
- ivo://CDS.VizieR/J/A+A/628/A85
- Title:
- Disk masses in the Orion Molecular Cloud-2
- Short Name:
- J/A+A/628/A85
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The mass evolution of protoplanetary disks is driven by internal processes and by external factors such as photoevaporation. Disentangling these two effects, however, remains difficult. We measured the dust masses of a sample of 132 disks in the Orion Molecular Cloud 2 (OMC-2) region, and compared them to externally photoevaporated disks in the Trapezium cluster, and to disks in nearby low-mass star-forming regions (SFRs). This allowed us to test whether initial disk properties are the same in high- and low-mass SFRs, and enabled a direct measurement of the effect of external photoevaporation on disks. A ~20'x4'mosaic of 3mm continuum observations from the Atacama Large Millimeter/submillimeter Array (ALMA) was used to measure the fluxes of 132 disks and 35 protostars >0.5pc away from the Trapezium. We identify and characterize a sample of 34 point sources not included in the Spitzer catalog on which the sample is based. Of the disks, 37 (28%) are detected, and have masses ranging from 7-270M_{sun}_. The detection rate for protostars is higher (69%). Disks near the Trapezium are found to be less massive by a factor 0.18^+0.18^_-0.11), implying a mass loss rate of 8x10^-8^M_{sun}_/yr. Our observations allow us to distinguish the impact of time and environment on disk evolution in a single SFR. The disk mass distribution in OMC-2 is statistically indistinguishable from that in nearby low-mass SFRs like Lupus and Taurus. We conclude that age is the main factor that determines the evolution of these disks. This result is robust with respect to assumptions of dust temperature, sample incompleteness, and biases. The difference between the OMC-2 and Trapezium cluster samples is consistent with mass loss driven by far-ultraviolet radiation near the Trapezium. Taken together, this implies that in isolation disk formation and evolution proceed similarly, regardless of cloud mass.
- ID:
- ivo://CDS.VizieR/J/ApJ/688/362
- Title:
- Disks around brown dwarfs in {sigma} Ori cluster
- Short Name:
- J/ApJ/688/362
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have performed a census of circumstellar disks around brown dwarfs in the {sigma} Ori cluster using all available images from the Infrared Array Camera on board the Spitzer Space Telescope. To search for new low-mass cluster members with disks, we have measured photometry for all sources in the Spitzer images and have identified the ones that have red colors that are indicative of disks. We present five promising candidates, which may consist of two brown dwarfs, two stars with edge-on disks, and a low-mass protostar if they are bona fide members. Spectroscopy is needed to verify the nature of these sources. We have also used the Spitzer data to determine which of the previously known probable members of {sigma} Ori are likely to have disks. By doing so, we measure disk fractions of ~40% and ~60% for low-mass stars and brown dwarfs, respectively.
- ID:
- ivo://CDS.VizieR/J/A+A/633/A82
- Title:
- Disks around T Tauri stars with SPHERE. II.
- Short Name:
- J/A+A/633/A82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Near-IR polarimetric images of protoplanetary disks provide the ability to characterize sub-structures that are potentially due to the interaction with (forming) planets. The available census is, however, strongly biased toward massive disks around old stars. The DARTTS program aims at alleviating this bias by imaging a large number of T Tauri stars with diverse properties. DARTTS-S employs VLT/SPHERE to image the polarized scattered light from disks. In parallel, DARTTS-A is providing ALMA images of the same targets for a comparison of different dust components. In this work, we present new SPHERE images of 21 circumstellar disks, which is the largest sample of this time yet to be released. A re-calculation of some relevant stellar and disk properties following Gaia DR2 is also performed. The targets of this work are significantly younger than those published thus far with polarimetric NIR imaging. Scattered light is unambiguously resolved in 11 targets while some polarized unresolved signal is detected in 3 additional sources. Some disk sub-structures are detected. However, the paucity of spirals and shadows from this sample reinforces the trend for which these NIR features are associated with Herbig stars, either because older or more massive. Furthermore, disk rings that are apparent in ALMA observations of some targets do not appear to have corresponding detections with SPHERE. Inner cavities larger than 15au are also absent from our images despite being expected from the SED. On the other hand, 3 objects show extended filaments at larger scale that are indicative of strong interaction with the surrounding medium. All but one of the undetected disks are best explained by their limited size (<~20au) and the high occurrence of stellar companions in these sources suggest an important role in limiting the disk size. One undetected disk is massive and very large at millimeter wavelengths implying it is self-shadowed in the near-IR. This work paves the way towards a more complete and less biased sample of scattered-light observations, which is required to interpret how disk features evolve throughout the disk lifetime.
- ID:
- ivo://CDS.VizieR/J/MNRAS/437/1561
- Title:
- DR 21 Chandra source catalogue
- Short Name:
- J/MNRAS/437/1561
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have studied the young low-mass pre-main sequence (PMS) stellar population associated with the massive star-forming region DR 21 by using archival X-ray Chandra observations and by complementing them with existing optical and infrared (IR) surveys. The Chandra observations have revealed for the first time a new highly extincted population of PMS low-mass stars previously missed in observations at other wavelengths. The X-ray population exhibits three main stellar density peaks, coincident with the massive star-forming regions, being the DR 21 core the main peak. The cross-correlated X-ray/IR sample exhibits a radial 'Spokes-like' stellar filamentary structure that extends from the DR 21 core towards the northeast. The near-IR data reveal a centrally peaked structure for the extinction, which exhibits its maximum in the DR 21 core and gradually decreases with the distance to the N-S cloud axis and to the cluster centre. We find evidence of a global mass segregation in the full low-mass stellar cluster, and of a stellar age segregation, with the youngest stars still embedded in the N-S cloud, and more evolved stars more spatially distributed. The results are consistent with the scenario where an elongated overall potential well created by the full low-mass stellar cluster funnels gas through filaments feeding stellar formation. Besides the full gravitational well, smaller scale local potential wells created by dense stellar sub-clusters of low-mass stars are privileged in the competition for the gas of the common reservoir, allowing the formation of massive stars. We also discuss the possibility that a stellar collision in the very dense stellar cluster revealed by Chandra in the DR 21 core is the origin of the large-scale and highly energetic outflow arising from this region.
- ID:
- ivo://CDS.VizieR/J/A+A/619/A106
- Title:
- 3D shape of Orion A from Gaia DR2
- Short Name:
- J/A+A/619/A106
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use the Gaia DR2 distances of about 700 mid-infrared selected young stellar objects in the benchmark giant molecular cloud Orion A to infer its 3D shape and orientation. We find that Orion A is not the fairly straight filamentary cloud that we see in (2D) projection, but instead a cometary-like cloud oriented toward the Galactic plane, with two distinct components: a denser and enhanced star-forming (bent) Head, and a lower density and star-formation quieter ~75pc long Tail. The true extent of Orion A is not the projected ~40pc but ~90pc, making it by far the largest molecular cloud in the local neighborhood. Its aspect ratio (~30:1) and high column-density fraction (~45%) make it similar to large-scale Milky Way filaments ("bones"), despite its distance to the galactic mid-plane being an order of magnitude larger than typically found for these structures.