- ID:
- ivo://CDS.VizieR/J/ApJ/658/358
- Title:
- Ae/Be stars of Magellanic Bridge in JHKs
- Short Name:
- J/ApJ/658/358
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have found Herbig Ae/Be star candidates in the western region of the Magellanic Bridge. Using the near-infrared camera SIRIUS and the 1.4m telescope IRSF, we surveyed ~3.0{deg}x1.3{deg} (24{deg}<~RA<~36{deg}, -75.0{deg}<~DE<~-73.7{deg}) in the J, H, and Ks bands. On the basis of colors and magnitudes, about 200 Herbig Ae/Be star candidates are selected. Considering the contaminations by miscellaneous sources, such as foreground stars and early-type dwarfs in the Magellanic Bridge, we estimate that about 80 (#40%) of the candidates are likely to be Herbig Ae/Be stars. We also found one concentration of the candidates at the young star cluster NGC 796, strongly suggesting the existence of pre-main-sequence (PMS) stars in the Magellanic Bridge. This is the first detection of PMS star candidates in the Magellanic Bridge, and if they are genuine PMS stars, this could be direct evidence of recent star formation. However, the estimate of the number of Herbig Ae/Be stars depends on the fraction of classical Be stars, and thus a more precise determination of the Be star fraction or observations to differentiate between the Herbig Ae/Be stars and classical Be stars are required.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/117/446
- Title:
- AFGL 5157 near-IR imaging
- Short Name:
- J/AJ/117/446
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present near-infrared images of the star-forming region AFGL 5157 in the JHK broadband filters and H_2_v=1-0S(1) narrowband filter. The images reveal a dense cluster of stars and infrared nebulosities associated with previously known infrared sources. Of 54 near-infrared sources detected in the nebula, NGC 1985, 12 exhibit infrared excesses typical of T Tauri stars, Herbig Ae/Be stars, and protostars. The magnitude and color distribution of the cluster of stars in the nebula are found to be different from those outside the nebular region. The K'-magnitude distribution of the cluster is quite flat, while the noncluster is peaked toward the low magnitude. The [H-K'] color of the cluster also displays 0.3 mag redder than that of the noncluster. The infrared nebula displays a bright nucleus with two spirals extended to the north and south. In light of the color properties of the nebula, we propose a shell model for the nebular structure that could be formed by star-forming activity of the central cluster.
- ID:
- ivo://CDS.VizieR/J/other/NewA/19.1
- Title:
- Ages and masses of NGC1893 PMS stars
- Short Name:
- J/other/NewA/19.
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper we continued our efforts to understand the star formation scenario in and around the young cluster NGC 1893. We used a sample of the young stellar sources (YSOs) identified on the basis of multiwavelength data (optical, near-infrared (NIR), mid-infrared (MIR) and X-ray) to study the nature of YSOs associated with the region. The identified YSOs show an age spread of ~5Myr. The YSOs located near the nebulae at the periphery of the cluster are relatively younger in comparison to those located within the cluster region. The present results are in accordance with those obtained by us in previous studies. Other main results from the present study are: 1) the fraction of disk bearing stars increases towards the periphery of the cluster; 2) there is an evidence supporting the notion that the mechanisms for disk dispersal operate less efficiently for low-mass stars; 3) the sample of Class II sources is found to be relatively older in comparison to that of Class III sources. A comparison of various properties of YSOs in the NGC 1893 region with those in the Tr 37/ IC 1396 region is also discussed.
- ID:
- ivo://CDS.VizieR/II/327
- Title:
- AKARI Far-Infrared Surveyor YSO catalog
- Short Name:
- II/327
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We demonstrate the use of the AKARI all-sky survey photometric data in the study of galactic star formation. Our aim was to select young stellar objects (YSOs) in the AKARI Far-Infrared Surveyor (FIS) Bright Source Catalogue. We used AKARI/FIS and Wide-field Infrared Survey Explorer (WISE) data to derive mid- and far-infrared colors of YSOs. Classification schemes based on quadratic discriminant analysis (QDA) have been given for YSOs and the training catalog for QDA was the whole-sky selection of previously known YSOs (i.e., listed in the SIMBAD database). A new catalog of AKARI FIS YSO candidates including 44001 sources has been prepared; the reliability of the classification is over 90%, as tested in comparison to known YSOs. As much as 76% of our YSO candidates are from previously uncatalogued types. The vast majority of these sources are Class I and II types according to the Lada classification. The distribution of AKARI FIS YSOs is well correlated with that of the galactic ISM; local over-densities were found on infrared loops and towards the cold clumps detected by Planck.
- ID:
- ivo://CDS.VizieR/J/A+A/648/A33
- Title:
- ALMA continuum images of TW Hya
- Short Name:
- J/A+A/648/A33
- Date:
- 08 Feb 2022 14:06:34
- Publisher:
- CDS
- Description:
- A key piece of information to understand the origin and role of protoplanetary disk substructures is their dust content. In particular, disk substructures associated with gas pressure bumps can work as dust traps, accumulating grains and reaching the necessary conditions to trigger the streaming instability. In order to shed some light on the origin and role that disk substructures play in planet formation, we aim to characterize the dust content of substructures in the disk of TW Hya. We present Atacama Large Millimeter Array (ALMA) observations of TW Hya at 3.1mm with ~50 milliarcsecond resolution. These new data were combined with archival high angular resolution ALMA observations at 0.87mm, 1.3mm, and 2.1mm. We analyze these multiwavelength data to infer a disk radial profile of the dust surface density, maximum particle size, and slope of the particle size distribution. Most previously known annular substructures in the disk of TW Hya are resolved at the four wavelengths. Inside the inner 3au cavity, the 2.1mm and 3.1mm images show a compact source of free-free emission, likely associated with an ionized jet. Our multiwavelength analysis of the dust emission shows that the maximum particle size in the disk of TW Hya is >1mm. The inner 20au are completely optically thick at all four bands, which results in the data tracing different disk heights at different wavelengths. Coupled with the effects of dust settling, this prevents the derivation of accurate density and grain size estimates in these regions. At r>20au, we find evidence of the accumulation of large dust particles at the position of the bright rings, indicating that these are working as dust traps. The total dust mass in the disk is between 250 and 330M_{sun}_, which represents a gas-to-dust mass ratio between 50 and 70. Our mass measurement is a factor of 4.5-5.9 higher than the mass that one would estimate using the typical assumptions of large demographic surveys. Our results indicate that the ring substructures in TW Hya are ideal locations to trigger the streaming instability and form new generations of planetesimals.
- ID:
- ivo://CDS.VizieR/J/ApJS/256/30
- Title:
- ALMA 1.33mm images of 10 FU Orionis-type stars
- Short Name:
- J/ApJS/256/30
- Date:
- 03 Mar 2022
- Publisher:
- CDS
- Description:
- The FU Orionis-type objects (FUors) are low-mass pre-main-sequence stars undergoing a temporary but significant increase of mass accretion rate from the circumstellar disk onto the protostar. It is not yet clear what triggers the accretion bursts and whether the disks of FUors are in any way different from the disks of nonbursting young stellar objects. Motivated by this, we conducted a 1.3mm continuum survey of 10 FUors and FUor-like objects with ALMA, using both the 7m array and the 12m array in two different configurations to recover emission at the widest possible range of spatial scales. We detected all targeted sources and several nearby objects as well. To constrain the disk structure, we fit the data with models of increasing complexity from 2D Gaussian to radiative transfer, enabling comparison with other samples modeled in a similar way. The radiative transfer modeling gives disk masses that are significantly larger than what is obtained from the measured millimeter fluxes assuming optically thin emission, suggesting that the FUor disks are optically thick at this wavelength. In comparison with samples of regular class II and class I objects, the disks of FUors are typically a factor of 2.9-4.4 more massive and a factor of 1.5-4.7 smaller in size. A significant fraction of them (65%-70%) may be gravitationally unstable.
- ID:
- ivo://CDS.VizieR/J/A+A/645/A139
- Title:
- ALMA mm observations of VLMS in Taurus
- Short Name:
- J/A+A/645/A139
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The discovery of giant planets orbiting very low mass stars (VLMS) and the recent observed substructures in disks around VLMS is challenging planet formation models. Specifically, radial drift of dust particles is a catastrophic barrier in these disks, which prevents the formation of planetesimals and therefore planets. We aim to estimate if structures, such as cavities, rings, and gaps, are common in disks around VLMS and to test models of structure formation in these disks. We also aim to compare the radial extent of the gas and dust emission in disks around VLMS, which can give us insight about radial drift. We studied six disks around VLMS in the Taurus star-forming region using ALMA Band 7 (~340GHz) at a resolution of ~0.1". The targets were selected because of their high disk dust content in their stellar mass regime. Our observations resolve the disk dust continuum in all disks. In addition, we detect the ^12^CO (J=3-2) emission line in all targets and ^13^CO (J=3-2) in five of the six sources. The angular resolution allows the detection of dust substructures in three out of the six disks, which we studied by using UV-modeling. Central cavities are observed in the disks around stars MHO6 (M5.0) and CIDA1 (M4.5), while we have a tentative detection of a multi-ringed disk around J0433. We estimate that a planet mass of 0.1M_Jup_ or 0.4M_Saturn_ is required for a single planet to create the first gap in J0433. For the cavities of MHO6 and CIDA1, a Saturn-mass planet (0.3M_Jup_) is required. The other three disks with no observed structures are the most compact and faintest in our sample, with the radius enclosing 90% of the continuum emission varying between 13-21au. The emission of ^12^CO and ^13^CO is more extended than the dust continuum emission in all disks of our sample. When using the ^12^CO emission to determine the gas disk extension Rgas, the ratio of Rgas/Rdust in our sample varies from 2.3 to 6.0. One of the disks in our sample, CIDA7, has the largest Rgas/Rdust ratio observed so far, which is consistent with models of radial drift being very efficient around VLMS in the absence of substructures. Given our limited angular resolution, substructures were only directly detected in the most extended disks, which represent 50% of our sample, and there are hints of unresolved structured emission in one of the bright smooth sources. Our observations do not exclude giant planet formation on the substructures observed. A comparison of the size and luminosity of VLMS disks with their counterparts around higher mass stars shows that they follow a similar relation .
- ID:
- ivo://CDS.VizieR/J/ApJ/895/126
- Title:
- ALMA observation of 152 1-11Myr aged stars
- Short Name:
- J/ApJ/895/126
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- We utilize ALMA archival data to estimate the dust disk size of 152 protoplanetary disks in Lupus (1-3Myr), Chamaeleon I (2-3Myr), and Upper-Sco (5-11Myr). We combine our sample with 47 disks from Tau/Aur and Oph whose dust disk radii were estimated, as here, through fitting radial profile models to visibility data. We use these 199 homogeneously derived disk sizes to identify empirical disk-disk and disk-host property relations as well as to search for evolutionary trends. In agreement with previous studies, we find that dust disk sizes and millimeter luminosities are correlated, but show for the first time that the relationship is not universal between regions. We find that disks in the 2-3Myr old ChaI are not smaller than disks in other regions of similar age, and confirm the Barenfeld et al. finding that the 5-10Myr USco disks are smaller than disks belonging to younger regions. Finally, we find that the outer edge of the solar system, as defined by the Kuiper Belt, is consistent with a population of dust disk sizes which have not experienced significant truncation.
- ID:
- ivo://CDS.VizieR/J/ApJ/885/64
- Title:
- Amplitude of variability for 150 YSOs in Orion
- Short Name:
- J/ApJ/885/64
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a quantitative, empirically based argument that at least some Class I sources are low-mass, pre-main-sequence stars surrounded by spatially extended envelopes of dusty gas. The source luminosity arises principally from stellar gravitational contraction, as in optically visible pre-main-sequence stars that lack such envelopes. We base our argument on the fact that some Class I sources in Orion and other star-forming regions have been observed by Spitzer to be periodic variables in the mid-infrared, and with periods consistent with T Tauri rotation rates. Using a radiative transfer code, we construct a variety of dust envelopes surrounding rotating, spotted stars, to see whether an envelope that produces a Class I spectral energy distribution at least broadly matches the observed modulations in luminosity. Acceptable envelopes can be either spherical or flattened and may or may not have polar cavities. The key requirement is that they have a modest equatorial optical depth at the Spitzer waveband of 3.6{mu}m, typically {tau}3.6~0.6. The total envelope mass, based on this limited study, is at most about 0.1M{sun}, less than a typical stellar mass. Future studies should focus on the dynamics of the envelope, to determine whether material is actually falling onto the circumstellar disk.
- ID:
- ivo://CDS.VizieR/J/AJ/155/196
- Title:
- Analysis of K2 LCs for members of USco & {rho} Oph
- Short Name:
- J/AJ/155/196
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of K2 light curves (LCs) for candidate members of the young Upper Sco (USco) association (~8 Myr) and the neighboring {rho} Oph embedded cluster (~1 Myr). We establish ~1300 stars as probable members, ~80% of which are periodic. The phased LCs have a variety of shapes which can be attributed to physical causes ranging from stellar pulsation and stellar rotation to disk-related phenomena. We identify and discuss a number of observed behaviors. The periods are ~0.2-30 days with a peak near 2 days and the rapid period end nearing breakup velocity. M stars in the young USco region rotate systematically faster than GK stars, a pattern also present in K2 data for the older Pleiades and Praesepe systems. At higher masses (types FGK), the well-defined period-color relationship for slowly rotating stars seen in the Pleiades and Praesepe systems is not yet present in USco. Circumstellar disks are present predominantly among the more slowly rotating M stars in USco, with few disks in the subday rotators. However, M dwarfs with disks rotate faster on average than FGK systems with disks. For four of these disked M dwarfs, we provide direct evidence for disk locking based on the K2 LC morphologies. Our preliminary analysis shows a relatively mass-independent spin-up by a factor of ~3.5 between USco and the Pleiades, then mass-dependent spin-down between Pleiades and Praesepe.