- ID:
- ivo://CDS.VizieR/J/A+A/420/683
- Title:
- Equivalent widths of 23 wide binaries
- Short Name:
- J/A+A/420/683
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present iron abundance analysis for 23 wide binaries with main sequence components in the temperature range 4900-6300K, taken from the sample of the pairs currently included in the radial velocity planet search on going at the Telescopio Nazionale Galileo (TNG) using the high resolution spectrograph SARG. The use of a line-by-line differential analysis technique between the components of each pair allows us to reach errors of about 0.02dex in the iron content difference. Most of the pairs have abundance differences lower than 0.02dex and there are no pairs with differences larger than 0.07dex. The four cases of differences larger than 0.02dex may be spurious because of the larger error bars affecting pairs with large temperature difference, cold stars and rotating stars.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/603/A57
- Title:
- 51 Eri b SPHERE/IFS spectra & atmosphere models
- Short Name:
- J/A+A/603/A57
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- 51 Eridani b is an exoplanet around a young (20Myr) nearby (29.4pc) F0-type star, which was recently discovered by direct imaging. It is one of the closest direct imaging planets in angular and physical separation (~0.5", ~13AU) and is well suited for spectroscopic analysis using integral field spectrographs. We aim to refine the atmospheric properties of the known giant planet and to constrain the architecture of the system further by searching for additional companions. We used the extreme adaptive optics instrument SPHERE at the Very Large Telescope (VLT) to obtain simultaneous dual-band imaging with IRDIS and integral field spectra with IFS, extending the spectral coverage of the planet to the complete Y- to H-band range and providing additional photometry in the K12-bands (2.11, 2.25 micron). We present the first spectrophotometric measurements in the Y and K bands for the planet and revise its J-band flux to values 40% fainter than previous measurements. Cloudy models with uniform cloud coverage provide a good match to the data. We derive the temperature, radius, surface gravity, metallicity, and cloud sedimentation parameter fsed. We find that the atmosphere is highly super-solar ([Fe/H]~1.0), and the low fsed~1.26 value is indicative of a vertically extended, optically thick cloud cover with small sized particles. The model radius and surface gravity estimates suggest higher planetary masses of M_gravity_=9.1^+4.9^_-3.3_. The evolutionary model only provides a lower mass limit of >2M_jupiter_ (for pure hot-start). The cold-start model cannot explain the luminosity of the planet. The SPHERE and NACO/SAM detection limits probe the 51 Eri system at solar system scales and exclude brown-dwarf companions more massive than 20M_jupiter_ beyond separations of ~2.5AU and giant planets more massive than 2M_jupiter_ beyond 9 au.
- ID:
- ivo://CDS.VizieR/J/A+A/629/A80
- Title:
- ESPRESSO blind RV exoplanet survey catalog
- Short Name:
- J/A+A/629/A80
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- One of the main scientific drivers for ESPRESSO, Echelle SPectrograph, is the detection and characterization of Earth-class exoplanets. With this goal in mind, the ESPRESSO guaranteed time observations (GTO) Catalog identifies the best target stars for a blind search for the radial velocity (RV) signals caused by Earth-class exoplanets. Using the most complete stellar catalogs available, we screened for the most suitable G, K, and M dwarf stars for the detection of Earth-class exoplanets with ESPRESSO. For most of the stars, we then gathered high-resolution spectra from new observations or from archival data. We used these spectra to spectroscopically investigate the existence of any stellar binaries, both bound or background stars. We derived the activity level using chromospheric activity indexes using log (R'_HK_), as well as the projected rotational velocity vsini. For the cases where planet companions are already known, we also looked at the possibility that additional planets may exist in the host's habitable zone using dynamical arguments. We estimated the spectroscopic contamination level, vsini, activity, stellar parameters and chemical abundances for 249 of the most promising targets. Using these data, we selected 45 stars that match our criteria for detectability of a planet like Earth. The stars presented and discussed in this paper constitute the ESPRESSO GTO catalog for the RV blind search for Earth-class planets. They can also be used for any other work requiring a detailed spectroscopic characterization of stars in the solar neighborhood.
- ID:
- ivo://CDS.VizieR/J/A+A/603/A30
- Title:
- Evidence for two distinct giant planet population
- Short Name:
- J/A+A/603/A30
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Analysis of the statistical properties of exoplanets, together with those of their host stars, are providing a unique view into the process of planet formation and evolution. In this paper we explore the properties of the mass distribution of giant planet companions to solar-type stars, in a quest for clues about their formation process. With this goal in mind we studied, with the help of standard statistical tests, the mass distribution of giant planets using data from the exoplanet.eu catalog and the SWEET-Cat database of stellar parameters for stars with planets. We show that the mass distribution of giant planet companions is likely to present more than one population with a change in regime around 4M_{Jup}_. Above this value host stars tend to be more metal poor and more massive and have [Fe/H] distributions that are statistically similar to those observed in field stars of similar mass. On the other hand, stars that host planets below this limit show the well-known metallicity-giant planet frequency correlation. We discuss these results in light of various planet formation models and explore the implications they may have on our understanding of the formation of giant planets. In particular, we discuss the possibility that the existence of two separate populations of giant planets indicates that two different processes of formation are at play.
- ID:
- ivo://CDS.VizieR/J/A+A/557/A70
- Title:
- Evolved planet hosts - stellar parameters
- Short Name:
- J/A+A/557/A70
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- It is still being debated whether the well-known metallicity - giant planet correlation for dwarf stars is also valid for giant stars. For this reason, having precise metallicities is very important. Precise stellar parameters are also crucial to planetary research for several other reasons. Different methods can provide different results that lead to discrepancies in the analysis of planet hosts. To study the impact of different analyses on the metallicity scale for evolved stars, we compare different iron line lists to use in the atmospheric parameter derivation of evolved stars. Therefore, we use a sample of 71 evolved stars with planets. With these new homogeneous parameters, we revisit the metallicity - giant planet connection for evolved stars. A spectroscopic analysis based on Kurucz models in local thermodynamic equilibrium (LTE) was performed through the MOOG code to derive the atmospheric parameters. Two different iron line list sets were used, one built for cool FGK stars in general, and the other for giant FGK stars. Masses were calculated through isochrone fitting, using the Padova models. Kolmogorov-Smirnov tests (K-S tests) were then performed on the metallicity distributions of various different samples of evolved stars and red giants. All parameters compare well using a line list set, designed specifically for cool and solar-like stars to provide more accurate temperatures. All parameters derived with this line list set are preferred and are thus adopted for future analysis. We find that evolved planet hosts are more metal-poor than dwarf stars with giant planets. However, a bias in giant stellar samples that are searched for planets is present. Because of a colour cut-off, metal-rich low-gravity stars are left out of the samples, making it hard to compare dwarf stars with giant stars. Furthermore, no metallicity enhancement is found for red giants with planets (logg<3.0dex) with respect to red giants without planets.
- ID:
- ivo://CDS.VizieR/J/A+A/574/A39
- Title:
- Exoplaneraty systems fundamental parameters
- Short Name:
- J/A+A/574/A39
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We assess the importance of tidal evolution and its interplay with magnetic braking in the population of hot-Jupiter planetary systems. By minimizing the total mechanical energy of a given system under the constraint of stellar angular momentum loss, we rigorously find the conditions for the existence of dynamical equilibrium states. We estimate their duration, in particular when the wind torque spinning down the star is almost compensated for by the tidal torque spinning it up. We introduce dimensionless variables to characterize the tidal evolution of observed hot Jupiter systems and discuss their spin and orbital states using generalized Darwin diagrams based on our new approach. We show that their orbital properties are related to the effective temperature of their host stars. The long-term evolution of planets orbiting F- and G-type stars is significantly different owing to the combined effect of magnetic braking and tidal dissipation. The existence of a quasi-stationary state, in the case of short-period planets, can significantly delay their tidal evolution that would otherwise bring the planet to fall into its host star. Most of the planets known to orbit F-type stars are presently found to be near this stationary state, probably in a configuration not too far from what they had when their host star settled on the zero-age main sequence. Considering the importance of angular momentum loss in the early stages of stellar evolution, our results indicate that it has to be considered to properly test the migration scenarios of planetary system formation.
- ID:
- ivo://CDS.VizieR/J/A+A/586/A94
- Title:
- Exoplanetary parameters for 18 bright stars
- Short Name:
- J/A+A/586/A94
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the interferometric angular diameters of 18 bright stars: HD3651 , HD9826, HD19994, HD75732, HD167042, HD170693, HD173416, HD185395, HD190360, HD217014, HD221345, HD1367, HD1671, HD154633, HD161178, HD161151, HD209369, HD218560. The first 11 host exoplanets (except HD185395). We combined these angular diameters {theta}_LD_ with the stellar distances to estimate the stellar radii. We perform SED fitting of the photometry to derive the stars bolometric flux Fbol with and without stellar extinction Av. We then give the effective temperature Teff_SED_ and angular diameter {theta}_SED_ from this SED fit, considering fixed Av, metallicity [Fe/H] and gravity log(g). Then, taking into account the stellar extinction, we derived from the bolometric flux and the measured angular diameters the effective temperature and luminosity to place the stars on the H-R diagram. We then used the PARSEC models to derive the best fit ages and masses of the stars, with error bars derived from Monte Carlo calculations. Typically, for main sequence stars, two distinct sets of solutions appear (an old and a young age). For stars that host known exoplanets, we also derive the exoplanets parameters considering the two different solutions (old and young): semi-major axis, planetary minimum mass and habitable zone of the host stars. Finally, we give the true mass, radius and density of the transiting exoplanet 55 Cnc e using the inteferometric radius and photometry.
- ID:
- ivo://CDS.VizieR/J/MNRAS/463/1780
- Title:
- Exoplanet candidates in Praesepe (M 44)
- Short Name:
- J/MNRAS/463/1780
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work we keep pushing K2 data to a high photometric precision, close to that of the Kepler main mission, using a PSF-based, neighbour-subtraction technique, which also overcome the dilution effects in crowded environments. We analyse the open cluster M 44 (NGC 2632), observed during the K2 Campaign 5, and extract light curves of stars imaged on module 14, where most of the cluster lies. We present two candidate exoplanets hosted by cluster members and five by field stars. As a by-product of our investigation, we find 1680 eclipsing binaries and variable stars, 1071 of which are new discoveries. Among them, we report the presence of a heartbeat binary star. Together with this work, we release to the community a catalogue with the variable stars and the candidate exoplanets found, as well as all our raw and detrended light curves.
- ID:
- ivo://CDS.VizieR/J/AJ/142/176
- Title:
- Exoplanet host stars. II. Speckle interferometry
- Short Name:
- J/AJ/142/176
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A study of the host stars to exoplanets is important for understanding their environment. To that end, we report new speckle observations of a sample of exoplanet host primaries. The bright exoplanet host HD 8673 (= HIP 6702) is revealed to have a companion, although at this time we cannot definitively establish the companion as physical or optical. The observing lists for planet searches and for these observations have for the most part been pre-screened for known duplicity, so the detected binary fraction is lower than what would otherwise be expected. Therefore, a large number of double stars were observed contemporaneously for verification and quality control purposes, to ensure that the lack of detection of companions for exoplanet hosts was valid. In these additional observations, 10 pairs are resolved for the first time and 60 pairs are confirmed.
- ID:
- ivo://CDS.VizieR/J/A+A/649/A156
- Title:
- Exoplanet host stars SPHERE multiplicity survey
- Short Name:
- J/A+A/649/A156
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We are studying the influence of stellar multiplicity on exoplanet systems and, in particular, systems that have been detected via radial-velocity searches. We are specifically interested in the closest companions as they would have a strong influence on the evolution of the original planet-forming disks. In this study, we present new companions that have been detected during our ongoing survey of exoplanet hosts with VLT/SPHERE (Spectro-Polarimetric High-Contrast Exoplanet Research). We are using the extreme adaptive optics imager SPHERE at the ESO/VLT to search for faint (sub)stellar companions. We utilized the classical coronagraphic imaging mode to perform a snapshot survey (3-6min integration time) of exoplanet host stars in the K_S_-band. We detected new stellar companions to the exoplanet host stars HD 1666, HIP 68468, HIP 107773, and HD 109271. With an angular separation of only 0.38arcsec (40au of projected separation), HIP 107773 is among the closest companions found for exoplanet host stars. The presence of the stellar companion explains the linear radial-velocity trend seen in the system. At such a small separation, the companion likely had a significant influence on the evolution of the planet-forming disk around the primary star. We find that the companion in the HD 1666 system may well be responsible for the high orbit eccentricity (0.63) of the detected Jupiter class planet, making this system one of only a few where such a connection can be established. A cross-match with the Gaia DR2 catalog shows, furthermore, that the near infrared faint companion around HD 109271 was detected in the optical and it is significantly brighter than in the near infrared, making it a white dwarf companion.