- ID:
- ivo://CDS.VizieR/J/AJ/154/14
- Title:
- Low-mass stars in 25 Ori group and Orion OB1a
- Short Name:
- J/AJ/154/14
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Orion OB1a sub-association is a rich low-mass star (LMS) region. Previous spectroscopic studies have confirmed 160 LMSs in the 25 Orionis stellar group (25 Ori), which is the most prominent overdensity of Orion OB1a. Nonetheless, the current census of the 25 Ori members is estimated to be lower than 50% complete, leaving a large number of members to be still confirmed. We retrieved 172 low-resolution stellar spectra in Orion OB1a observed as ancillary science in the SDSS-III/BOSS survey, for which we classified their spectral types and determined physical parameters. To determine memberships, we analyzed the H{alpha} emission, LiI{lambda}6708 absorption, and NaI{lambda}{lambda}8183,8195 absorption as youth indicators in stars classified as M type. We report 50 new LMSs spread across the 25 Orionis, ASCC18, and ASCC20 stellar groups with spectral types from M0 to M6, corresponding to a mass range of 0.10{<=}m/M_{Sun}_{<=}0.58. This represents an increase of 50% in the number of known LMSs in the area and a net increase of 20% in the number of 25 Ori members in this mass range. Using parallax values from the Gaia DR1 catalog, we estimated the distances to these three stellar groups and found that they are all co-distant, at 338+/-66pc. We analyzed the spectral energy distributions of these LMSs and classified their disks into evolutionary classes. Using H-R diagrams, we found a suggestion that 25 Ori could be slightly older than the other two observed groups in Orion OB1a.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/390/545
- Title:
- Magnetic field and velocity of early M dwarfs
- Short Name:
- J/MNRAS/390/545
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present here additional results of a spectropolarimetric survey of a small sample of stars ranging from spectral type M0 to M8 aimed at investigating observationally how dynamo processes operate in stars on both sides of the full convection threshold (spectral type M4). The present paper focuses on early M stars (M0-M3), that is above the full convection threshold. Applying tomographic imaging techniques to time series of rotationally modulated circularly polarized profiles collected with the NARVAL spectropolarimeter, we determine the rotation period and reconstruct the large-scale magnetic topologies of six early M dwarfs. We find that early-M stars preferentially host large-scale fields with dominantly toroidal and non-axisymmetric poloidal configurations, along with significant differential rotation (and long-term variability); only the lowest-mass star of our subsample is found to host an almost fully poloidal, mainly axisymmetric large-scale field resembling those found in mid-M dwarfs.
- ID:
- ivo://CDS.VizieR/J/MNRAS/390/567
- Title:
- Magnetic field and velocity of mid M dwarfs
- Short Name:
- J/MNRAS/390/567
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present in this paper, the first results of a spectropolarimetric analysis of a small sample (~20) of active stars ranging from spectral type M0 to M8, which are either fully convective or possess a very small radiative core. This study aims at providing new constraints on dynamo processes in fully convective stars. This paper focuses on ve stars of spectral type ~M4, i.e. with masses close to the full convection threshold (0.35M_{sun}_), and with short rotational periods. Tomographic imaging techniques allow us to reconstruct the surface magnetic topologies from the rotationally modulated time-series of circularly polarized profiles. We find that all stars host mainly axisymmetric large-scale poloidal fields. Three stars were observed at two different epochs separated by 1yr; we find the magnetic topologies to be globally stable on this time-scale. We also provide an accurate estimation of the rotational period of all stars, thus allowing us to start studying how rotation impacts the large-scale magnetic field.
- ID:
- ivo://CDS.VizieR/J/ApJ/756/74
- Title:
- 2MASS view of Sgr dSph. VII. Kinematics
- Short Name:
- J/ApJ/756/74
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have assembled a large-area spectroscopic survey of giant stars in the Sagittarius (Sgr) dwarf galaxy core. Using medium resolution (R~15000), multifiber spectroscopy we have measured velocities of these stars, which extend up to 12{deg} from the galaxy's center (3.7 core radii or 0.4 times the King limiting radius). From these high-quality spectra we identify 1310 Sgr members out of 2296 stars surveyed, distributed across 24 different fields across the Sgr core. Additional slit spectra were obtained of stars bridging from the Sgr core to its trailing tail. Our systematic, large-area sample shows no evidence for significant rotation, a result at odds with the ~20km/s rotation required as an explanation for the bifurcation seen in the Sgr tidal stream; the observed small (<=4km/s) velocity trend primarily along the major axis is consistent with models of the projected motion of an extended body on the sky with no need for intrinsic rotation. The Sgr core is found to have a flat velocity dispersion (except for a kinematically colder center point) across its surveyed extent and into its tidal tails, a property that matches the velocity dispersion profiles measured for other Milky Way dwarf spheroidal (dSph) galaxies. We comment on the possible significance of this observed kinematical similarity for the dynamical state of the other classical Milky Way dSphs in light of the fact that Sgr is clearly a strongly tidally disrupted system.
- ID:
- ivo://CDS.VizieR/J/other/RAA/15.1182
- Title:
- M Dwarf catalog of LAMOST DR1
- Short Name:
- J/other/RAA/15.1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a spectroscopic catalog of 93 619 M dwarfs from the first data release of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) general survey. During sample selection, M giant contamination was eliminated using 2MASS photometry and CaH/TiO molecular indices. For each spectrum, the spectral subtype and values are provided including radial velocity, H{alpha} equivalent width, a series of prominent molecular band indices, and the metal-sensitive parameter {zeta}, as well as distances and the space motions for high S/N objects. In addition, H{alpha} emission lines are measured to examine the magnetic activity properties of M dwarfs and 7179 active ones are found. In particular, a subsample with significant variation in magnetic activity is revealed through observations from different epochs. Finally, statistical analysis for this sample is performed, including the metallicity classification, the distribution of molecular band indices and their errors.
- ID:
- ivo://CDS.VizieR/VI/156
- Title:
- M-dwarf Lum-Temp-Radius relationships
- Short Name:
- VI/156
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- There is growing evidence that M-dwarf stars suffer radius inflation when compared to theoretical models, suggesting that models are missing some key physics required to completely describe stars at effective temperatures (TSED) less than about 4000K. The advent of Gaia DR2 distances finally makes available large datasets to determine the nature and extent of this effect.We employ an all-sky sample, comprising of >15000 stars, to determine empirical relation-ships between luminosity, temperature and radius.This is accomplished using only geometric distances and multiwave-band photometry, by utilising a modified spectral energy distribution fitting method. The radii we measure show an inflation of 3-7% compared to models, but nomore than a 1-2% intrinsic spread in the inflated sequence. We show that we are currently able to determine M-dwarf radii to an accuracy of 2.4% using our method. However, we determine that this is limited by the precision of metallicity measurements, which contribute 1.7% to the measured radius scatter. We also present evidence that stellar magnetism is currently unable to explain radius inflation in M-dwarfs.
- ID:
- ivo://CDS.VizieR/J/A+A/541/A9
- Title:
- M dwarfs activity and radial velocity
- Short Name:
- J/A+A/541/A9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Due to their low mass and luminosity, M dwarfs are ideal targets if one hopes to find low-mass planets similar to Earth by using the radial velocity (RV) method. However, stellar magnetic cycles could add noise or even mimic the RV signal of a long-period companion. Following our previous work that studied the correlation between activity cycles and long-term RV variations for K dwarfs we now expand that research to the lower-end of the main sequence. Our objective is to detect any correlations between long-term activity variations and the observed RV of a sample of M dwarfs. We used a sample of 27 M-dwarfs with a median observational timespan of 5.9 years. The cross-correlation function (CCF) with its parameters RV, bisector inverse slope (BIS), full-width-at-half- maximum (FWHM) and contrast have been computed from the HARPS spectrum. The activity index have been derived using the Na I D doublet. These parameters were compared with the activity level of the stars to search for correlations. We detected RV variations up to ~5m/s that we can attribute to activity cycle effects. However, only 36% of the stars with long-term activity variability appear to have their RV affected by magnetic cycles, on the typical timescale of ~6 years. Therefore, we suggest a careful analysis of activity data when searching for extrasolar planets using long-timespan RV data.
- ID:
- ivo://CDS.VizieR/J/AJ/159/52
- Title:
- M dwarfs at high spectral-resolution in Y band
- Short Name:
- J/AJ/159/52
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In young Sun-like stars and field M-dwarf stars, chromospheric and coronal magnetic activity indicators such as H{alpha}, X-ray, and radio emission are known to saturate with low Rossby number (Ro<~0.1), defined as the ratio of rotation period to convective turnover time. The mechanism for the saturation is unclear. In this paper, we use photospheric TiI and CaI absorption lines in the Y band to investigate magnetic field strength in M dwarfs for Rossby numbers between 0.01 and 1.0. The equivalent widths of the lines are magnetically enhanced by photospheric spots, a global field, or a combination of the two. The equivalent widths behave qualitatively similar to the chromospheric and coronal indicators: we see increasing equivalent widths (increasing absorption) with decreasing Ro and saturation of the equivalent widths for Ro<~0.1. The majority of M dwarfs in this study are fully convective. The results add to mounting evidence that the magnetic saturation mechanism occurs at or beneath the stellar photosphere.
- ID:
- ivo://CDS.VizieR/J/A+A/640/A52
- Title:
- M dwarfs HeI infrared triplet variability
- Short Name:
- J/A+A/640/A52
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The HeI infrared (IR) triplet at 10830{AA} is an important activity indicator for the Sun and in solar-type stars, however, it has rarely been studied in relation to M dwarfs to date. In this study, we use the time-averaged spectra of 319 single stars with spectral types ranging from M0.0 V to M9.0V obtained with the CARMENES high resolution optical and near-infrared spectrograph at Calar Alto to study the properties of the HeI IR triplet lines. In quiescence, we find the triplet in absorption with a decrease of the measured pseudo equivalent width (pEW) towards later sub-types. For stars later than M5.0 V, the HeI triplet becomes undetectable in our study. This dependence on effective temperature may be related to a change in chromospheric conditions along the Mdwarf sequence. When an emission in the triplet is observed, we attribute it to flaring. The absence of emission during quiescence is consistent with line formation by photo-ionisation and recombination, while flare emission may be caused by collisions within dense material. The HeI triplet tends to increase in depth according to increasing activity levels, ultimately becoming filled in; however, we do not find a correlation between the pEW(He IR) and X-ray properties. This behaviour may be attributed to the absence of very inactive stars (LX/Lbol<-5.5) in our sample or to the complex behaviour with regard to increasing depth and filling in.
- ID:
- ivo://CDS.VizieR/J/A+A/571/A36
- Title:
- M dwarfs in b201 tile of VVV survey
- Short Name:
- J/A+A/571/A36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The intrinsically faint M dwarfs are the most numerous stars in the Galaxy, have main-sequence lifetimes longer than the Hubble time, and host some of the most interesting planetary systems known to date. Their identification and classification throughout the Galaxy is crucial to unraveling the processes involved in the formation of planets, stars, and the Milky Way. The ESO Public Survey VVV is a deep near-IR survey mapping the Galactic bulge and southern plane. The VVV b201 tile, located in the border area of the bulge, was specifically selected for the characterisation of M dwarfs. We used VISTA photometry to identify M dwarfs in the VVV b201 tile, to estimate their subtypes, and to search for transit-like light curves from the first 26 epochs of the survey.