- ID:
- ivo://CDS.VizieR/J/AJ/161/24
- Title:
- TRICERATOPS predictions for 384 TOIs
- Short Name:
- J/AJ/161/24
- Date:
- 10 Dec 2021
- Publisher:
- CDS
- Description:
- We present TRICERATOPS, a new Bayesian tool that can be used to vet and validate TESS Objects of Interest (TOIs). We test the tool on 68 TOIs that have been previously confirmed as planets or rejected as astrophysical false positives. By looking in the false-positive probability (FPP)-nearby false-positive probability (NFPP) plane, we define criteria that TOIs must meet to be classified as validated planets (FPP<0.015 and NFPP<10^-3^), likely planets (FPP<0.5 and NFPP<10^-3^), and likely nearby false positives (NFPP>10^-1^). We apply this procedure on 384 unclassified TOIs and statistically validate 12, classify 125 as likely planets, and classify 52 as likely nearby false positives. Of the 12 statistically validated planets, 9 are newly validated. TRICERATOPS is currently the only TESS vetting and validation tool that models transits from nearby contaminant stars in addition to the target star. We therefore encourage use of this tool to prioritize follow-up observations that confirm bona fide planets and identify false positives originating from nearby stars.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/other/RAA/19.41
- Title:
- TTVs & linear ephemerides of Kepler exoplanets
- Short Name:
- J/other/RAA/19.4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We determined new linear ephemerides of transiting exoplanets using long-cadence de-trended data from quarters Q1 to Q17 of Kepler mission. We analysed TTV diagrams of 2098 extrasolar planets. The TTVs of 121 objects were excluded (because of insufficient data-points, influence of stellar activity, etc). Finally, new linear ephemerides of 1977 exoplanets from Kepler archive are presented. The significant linear trend was observed on TTV diagrams of approximately 35% of studied exoplanets. Knowing correct linear ephemeris is principal for successful follow-up observations of transits. Residual TTV diagrams of 64 analysed exoplanets shows periodic variation, 43 of these TTV planets were not reported yet.
- ID:
- ivo://CDS.VizieR/J/A+A/641/A170
- Title:
- Ultracool dwarf K2 light curves
- Short Name:
- J/A+A/641/A170
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- With the discovery of a planetary system around the ultracool dwarf TRAPPIST-1, there has been a surge of interest in such stars as potential planet hosts. Planetary systems around ultracool dwarfs represent our best chance of characterising temperate rocky-planet atmospheres with the James Webb Space Telescope. However, TRAPPIST-1 remains the only known system of its kind and the occurrence rate of planets around ultracool dwarfs is still poorly constrained. We seek to perform a complete transit search on the ultracool dwarfs observed by NASA's K2 mission, and use the results to constrain the occurrence rate of planets around these stars. We filter and characterise the sample of ultracool dwarfs observed by K2 by fitting their spectral energy distributions and using parallaxes from Gaia. We build an automatic pipeline to perform photometry, detrend the light curves, and search for transit signals. Using extensive injection-recovery tests of our pipeline, we compute the detection sensitivity of our search, and thus the completeness of our sample. We infer the planetary occurrence rates within a hierarchical Bayesian model (HBM) to treat uncertain planetary parameters.With the occurrence rate parametrised by a step-wise function, we present a convenient way to directly marginalise over the second level of our HBM (the planetary parameters). Our method is applicable generally and can greatly speed up inference with larger catalogues of detected planets. We detect one planet in our sample of 702 ultracool dwarfs: a previously validated mini-Neptune. We thus infer a mini-Neptune (2-4R_{Earth}_) occurrence rate of {eta}=0.20^+0.16^_0.11_ within orbital periods of 1-20 days. For super-Earths (1-2R_{Earth}_) and ice or gas giants (4-6R_{Earth}_) within 1-20 days, we place 95% credible intervals of {eta}<1.14 and {eta}<0.29, respectively. If TRAPPIST-1-like systems were ubiquitous, we would have a 96% chance of finding at least one.
- ID:
- ivo://CDS.VizieR/J/ApJS/239/5
- Title:
- Variable stars and cand. planets from K2
- Short Name:
- J/ApJS/239/5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We produce light curves for all ~34000 targets observed with K2 in Campaign 17 (C17), identifying 34 planet candidates, 184 eclipsing binaries, and 222 other periodic variables. The forward-facing direction of the C17 field means follow-up can begin immediately now that the campaign has concluded and interesting targets have been identified. The C17 field has a large overlap with C6, so this latest campaign also offers an infrequent opportunity to study a large number of targets already observed in a previous K2 campaign. The timing of the C17 data release, shortly before science operations begin with the Transiting Exoplanet Survey Satellite (TESS), also lets us exercise some of the tools and methods developed for identification and dissemination of planet candidates from TESS. We find excellent agreement between these results and those identified using only K2-based tools. Among our planet candidates are several planet candidates with sizes <4R_{Earth}_ and orbiting stars with Kp<~10 (indicating good RV targets of the sort TESS hopes to find) and a Jupiter-sized single-transit event around a star already hosting a 6 day planet candidate.
- ID:
- ivo://CDS.VizieR/J/AJ/157/171
- Title:
- Visual analysis and demographics of Kepler TTVs
- Short Name:
- J/AJ/157/171
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We visually analyzed the transit timing variation (TTV) data of 5930 Kepler Objects of Interest (KOIs) homogeneously. Using data from Rowe et al. (2014, J/ApJ/784/45) and Holczer et al. (2015, J/ApJ/807/170; 2016, J/ApJS/225/9), we investigated TTVs for nearly all KOIs in Kepler's Data Release 24 catalog. Using TTV plots, periodograms, and phase-folded quadratic plus sinusoid fits, we visually rated each KOI's TTV data in five categories. Our ratings emphasize the hundreds of planets with TTVs that are weaker than the ~200 that have been studied in detail. Our findings are consistent with statistical methods for identifying strong TTVs, though we found some additional systems worth investigation. Between about 3-50 days and 1.3-6 Earth radii, the frequency of strong TTVs increases with period and radius. As expected, strong TTVs are very common when period ratios are near a resonance, but there is not a one-to-one correspondence. The observed planet-by-planet frequency of strong TTVs is only somewhat lower in systems with one or two known planets (7%+/-1%) than in systems with three or more known planets (11%+/-2%). We attribute TTVs to known planets in multitransiting systems but find ~30 cases where the perturbing planet is unknown. Our conclusions are valuable as an ensemble for learning about planetary system architectures and individually as stepping stones toward more-detailed mass-radius constraints. We also discuss Data Release 25 TTVs, investigate ~100 KOIs with transit duration and/or depth variations, and estimate that the Transiting Exoplanet Survey Satellite will likely find only ~10 planets with strong TTVs.
- ID:
- ivo://CDS.VizieR/J/A+A/643/A98
- Title:
- VIsual Binary Exoplanet survey with SPHERE
- Short Name:
- J/A+A/643/A98
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent surveys indicate that planets in binary systems are more abunda- nt than previously thought, which is in agreement with theoretical work on disc dynamics and planet formation in binaries. So far, most observational surveys, however, have focused on short-period planets in binaries, thus little is known about the occurrence rates of planets on longer periods (>10au). In order to measure the abundance and physical characteristics of wide-orbit giant exoplanets in binary systems, we have designed the 'VIsual Binary Exoplanet survey with Sphere' (VIBES) to search for planets in visual binaries. It uses the SPHERE instrument at VLT to search for planets in 23 visual binary and four visual triple systems with ages of <145Myr and distances of <150pc. We used the IRDIS dual-band imager on SPHERE to acquire high-contrast images of the sample targets. For each binary, the two components were observed at the same time with a coronagraph masking only the primary star. For the triple star, the tight components were treated as a single star for data reduction. This enabled us to effectively search for companions around 50 individual stars in binaries and four binaries in triples. We derived upper limits of <13.7% for the frequency of sub-stellar companions around primaries in visual binaries, <26.5% for the fraction of sub-stellar companions around secondaries in visual binaries, and an occurrence rate of <9.0% for giant planets and brown dwarfs around either component of visual binaries. We have combined our observations with literature measurements to astrometrically confirm, for the first time, that 20 binaries and two triple systems, which were previously known, are indeed physically bound. Finally, we discovered a third component of the binary HD 121336. The upper limits we derived are compatible with planet formation through the core accretion and the gravitational instability processes in binaries. These limits are also in line with limits found for single star and circumbinary planet search surveys.
- ID:
- ivo://CDS.VizieR/J/ApJS/255/6
- Title:
- Warm Jupiters in TESS FFIs 1st year (2018-2019 July)
- Short Name:
- J/ApJS/255/6
- Date:
- 06 Dec 2021 19:57:22
- Publisher:
- CDS
- Description:
- Warm Jupiters-defined here as planets larger than 6 Earth radii with orbital periods of 8-200 days-are a key missing piece in our understanding of how planetary systems form and evolve. It is currently debated whether Warm Jupiters form in situ, undergo disk or high-eccentricity tidal migration, or have a mixture of origin channels. These different classes of origin channels lead to different expectations for Warm Jupiters' properties, which are currently difficult to evaluate due to the small sample size. We take advantage of the Transiting Exoplanet Survey Satellite (TESS) survey and systematically search for Warm Jupiter candidates around main-sequence host stars brighter than the TESS-band magnitude of 12 in the full-frame images in Year 1 of the TESS Prime Mission data. We introduce a catalog of 55 Warm Jupiter candidates, including 19 candidates that were not originally released as TESS objects of interest by the TESS team. We fit their TESS light curves, characterize their eccentricities and transit-timing variations, and prioritize a list for ground-based follow-up and TESS Extended Mission observations. Using hierarchical Bayesian modeling, we find the preliminary eccentricity distributions of our Warm-Jupiter-candidate catalog using a beta distribution, a Rayleigh distribution, and a two-component Gaussian distribution as the functional forms of the eccentricity distribution. Additional follow-up observations will be required to clean the sample of false positives for a full statistical study, derive the orbital solutions to break the eccentricity degeneracy, and provide mass measurements.
- ID:
- ivo://CDS.VizieR/J/AcA/68/371
- Title:
- WASP and KELT planet transits
- Short Name:
- J/AcA/68/371
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Theoretical calculations and some indirect observations show that massive exoplanets on tight orbits must decay due to tidal dissipation within their host stars. This orbital evolution could be observationally accessible through precise transit timing over a course of decades. The rate of planetary in-spiraling may not only help us to understand some aspects of evolution of planetary systems, but also can be used as a probe of the stellar internal structure. In this paper we present results of transit timing campaigns organized for a carefully selected sample of the Northern hemisphere hot Jupiter-like planets which were found to be the best candidates for detecting planet-star tidal interactions. Among them, there is the WASP-12 system which is the best candidate for possessing an in-falling giant exoplanet. Our new observations support the scenario of orbital decay of WASP-12 b and allow us to refine its rate. The derived tidal quality parameter of the host star Q'*=(1.82+/-0.32)x10^5^ is in agreement with theoretical predictions for subgiant stars. For the remaining systems - HAT-P-23, KELT-1, KELT-16, WASP-33, and WASP-103 - our transit timing data reveal no deviations from the constant-period models, hence constraints on the individual rates of orbital decay were placed. The tidal quality parameters of host stars in at least four systems - HAT-P-23, KELT-1, WASP-33, and WASP-103 - were found to be greater than the value reported for WASP-12. This is in line with the finding that those hosts are main sequence stars, for which efficiency of tidal dissipation is predicted to be relatively weak.
- ID:
- ivo://CDS.VizieR/J/A+A/636/A98
- Title:
- WASP-18A, WASP-19, WASP-77A photometry
- Short Name:
- J/A+A/636/A98
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 22 new transit observations of the exoplanets WASP-18Ab, WASP-19b, and WASP-77Ab, from the Transit Monitoring in the South (TraMoS) project. We simultaneously model our newly collected transit light curves with archival photometry and radial velocity data to obtain refined physical and orbital parameters. We include TESS light curves of the three exoplanets to perform an extended analysis of the variations in their transit mid-time (TTV) and to refine their planetary orbital ephemeris. We did not find significant TTVRMS variations larger than 47, 65, and 86 seconds for WASP-18Ab, WASP-19b, and WASP-77Ab, respectively. Dynamical simulations were carried out to constrain the masses of a possible perturber. The observed mean square (RMS) could be produced by a perturber body with an upper limit mass of 9, 2.5, 11 and 4M_{Earth}_ in 1:2, 1:3, 2:1, and 3:1 resonances in the WASP-18Ab system. In the case of WASP-19b, companions with masses up to 0.26, 0.65, 1, and 2.8M_{Earth}_, in 1:2, 2:1, 3:1, and 5:3 resonances respectively, produce the RMS. For the WASP-77Ab system, this RMS could be produced by a planet with mass in the range of 1.5-9M_{Earth}_ in 1:2, 1:3, 2:1, 2:3, 3:1, 3:5, or 5:3 resonances. Comparing our results with RV variations, we discard massive companions with 350M_{Earth}_ in 17:5 resonance for WASP-18Ab, 95M_{Earth}_ in 4:1 resonance for WASP-19b, and 105M_{Earth}_ in 5:2 resonance for WASP-77Ab. Finally, using a Lomb-Scargle period search we find no evidence of a periodic trend on our TTV data for the three exoplanets.
- ID:
- ivo://CDS.VizieR/J/A+A/630/A89
- Title:
- WASP-12b and WASP-43b griz light curves
- Short Name:
- J/A+A/630/A89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The TESS and PLATO missions are expected to find vast numbers of new transiting planet candidates. However, only a fraction of these candidates will be legitimate planets, and the candidate validation will require a significant amount of follow-up resources. Radial velocity (RV) follow-up study can be carried out only for the most promising candidates around bright, slowly rotating, stars. Thus, before devoting RV resources to candidates, they need to be vetted using cheaper methods, and, in the cases for which an RV confirmation is not feasible, the candidate's true nature needs to be determined based on these alternative methods alone. We study the applicability of multicolour transit photometry in the validation of transiting planet candidates when the candidate signal arises from a real astrophysical source (transiting planet, eclipsing binary, etc.), and not from an instrumental artefact. Particularly, we aim to answer how securely we can estimate the true uncontaminated star-planet radius ratio when the light curve may contain contamination from unresolved light sources inside the photometry aperture when combining multicolour transit observations with a physics-based contamination model in a Bayesian parameter estimation setting. More generally, we study how the contamination level, colour differences between the planet host and contaminant stars, transit signal-to-noise ratio, and available prior information affect the contamination and true radius ratio estimates. The study is based on simulations and ground-based multicolour transit observations. The contamination analyses were carried out with a contamination model integrated into the PYTRANSIT V2 transit modelling package, and the observations were carried out with the MuSCAT2 multicolour imager installed in the 1.5m Telescopio Carlos Sanchez in the Teide Observatory, in Tenerife. We show that multicolour transit photometry can be used to estimate the amount of flux contamination and the true radius ratio. Combining the true radius ratio with an estimate for the stellar radius yields the true absolute radius of the transiting object, which is a valuable quantity in statistical candidate validation, and enough in itself to validate a candidate whose radius falls below the theoretical lower limit for a brown dwarf.