- ID:
- ivo://CDS.VizieR/J/AJ/121/2159
- Title:
- Basic parameters for 372 A, F & G stars
- Short Name:
- J/AJ/121/2159
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Paper I (Cat. <J/AJ/121/2148>) of this series presented precise MK spectral types for 372 late A-, F-, and early G-type stars with the aim of understanding the nature of luminosity classification on the MK spectral classification system for this range of spectral types. In this paper, a multidimensional downhill simplex technique is introduced to determine the basic parameters of the program stars from fits of synthetic spectra and fluxes with observed spectra and fluxes from Strvmgren uvby photometry. This exercise yields useful calibrations of the MK spectral classification system but, most importantly, gives insight into the physical nature of luminosity classification on the MK spectral classification system. In particular, we find that in this range of spectral types, microturbulence appears to be at least as important as gravity in determining the MK luminosity type.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/445/2268
- Title:
- Bayesian method for detecting stellar flares
- Short Name:
- J/MNRAS/445/2268
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of 'quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.
- ID:
- ivo://CDS.VizieR/J/MNRAS/454/28
- Title:
- Bayesian statistics for massive stars
- Short Name:
- J/MNRAS/454/28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Spectral analysis is a powerful tool to investigate stellar properties and it has been widely used for decades now. However, the methods considered to perform this kind of analysis are mostly based on iteration among a few diagnostic lines to determine the stellar parameters. While these methods are often simple and fast, they can lead to errors and large uncertainties due to the required assumptions. Here, we present a method based on Bayesian statistics to find simultaneously the best combination of effective temperature, surface gravity, projected rotational velocity, and microturbulence velocity, using all the available spectral lines. Different tests are discussed to demonstrate the strength of our method, which we apply to 54 mid-resolution spectra of field and cluster B stars obtained at the Observatoire du Mont-Megantic. We compare our results with those found in the literature. Differences are seen which are well explained by the different methods used. We conclude that the B-star microturbulence velocities are often underestimated. We also confirm the trend that B stars in clusters are on average faster rotators than field B stars.
- ID:
- ivo://CDS.VizieR/J/MNRAS/474/5287
- Title:
- BeSOS Be stars stellar parameters
- Short Name:
- J/MNRAS/474/5287
- Date:
- 07 Dec 2021 13:16:10
- Publisher:
- CDS
- Description:
- The Be phenomenon is present in about 20 per cent of B-type stars. Be stars show variability on a broad range of time-scales, which in most cases is related to the presence of a circumstellar disc of variable size and structure. For this reason, a time-resolved survey is highly desirable in order to understand the mechanisms of disc formation, which are still poorly understood. In addition, a complete observational sample would improve the statistical significance of the study of stellar and disc parameters. The 'Be Stars Observation Survey' (BeSOS) is a survey containing reduced spectra obtained using the Pontifica Universidad Catolica High Echelle Resolution Optical Spectrograph (PUCHEROS) with a spectral resolution of 17000 in the range 4260-7300{AA}. BeSOS's main objective is to offer consistent spectroscopic and time-resolved data obtained with one instrument. The user can download or plot the data and obtain stellar parameters directly from the website. We also provide a star-by-star analysis based on photometric, spectroscopic and interferometric data, as well as general information about the whole BeSOS sample. Recently, BeSOS led to the discovery of a new Be star HD 42167 and facilitated study of the V/R variation of HD 35165 and HD 120324, the steady disc of HD 110335 and the Be shell status of HD 127972. Optical spectra used in this work, as well as the stellar parameters derived, are available online at http://besos.ifa.uv.cl.
- ID:
- ivo://CDS.VizieR/J/A+A/379/162
- Title:
- Binaries with post-T Tauri secondaries
- Short Name:
- J/A+A/379/162
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- File table2 contains the values of the color indices: (b-y), m1, c1, H{beta}, from the Stroemgren photometry and the observational errors on these indices as given by the Hauck and Mermiliod (1998, Cat. <II/215>). The values of Teff and logg are obtained from the Moon & Dworetsky (1985MNRAS.217..305M) calibration to which we have implemented the corrections by Castelli (1991A&A...251..106C). The errors on the parameters Teff and logg, as explained in section 3.3, are the consequence of the observational error on the photometric indices; SigmaTeff is the total error, on Teff, computed as explained in section 3.3. File table5 contains the values of the parallax, the error on the parallax, the Teff and the luminosity for the early-type star and late type star of each visual binary system. The errors on the Teff and on the luminosity are taken into account to compute for each of these parameters its minimum and maximum value. File table7 gives the values of the ages and masses computed for the early-type stars from the Schaller et al. (1993, Cat. <J/A+AS/96/269>) isochrones and Meynet at al. (1993A&AS...98..477M) models and from the Girardi et al. (2000, Cat. <J/A+AS/141/371>) models. The errors on the Teff and the luminosity are used to compute the minimum and the maximum values for the age and the mass. The last two columns concern only the primary stars with a Teff greater than 15000K for which we also compute the age and the mass using as Teff value: (Teff-500K); 500K corresponds to the systematic shift between Teff derived by using different photometric system (see Sect. 3.3). File table9 gives the values of the ages and masses computed for the late-type components from the isochrones and evolutionary tracks by D'Antona et al. (1998, web page, http://www.mporzio.astro.it/~dantona/ ) Palla and Stahler (1999ApJ...525..772P), Siess et al. (2000A&A...358..593S) and Tout et al. (1999MNRAS.310..360T). When possible, the minimum and the maximum values of these parameters are given by taking into account the errors on the Teff and on the luminosity.
- ID:
- ivo://CDS.VizieR/J/ApJ/875/124
- Title:
- Binary red supergiants. II. B-type companions
- Short Name:
- J/ApJ/875/124
- Date:
- 20 Jan 2022 11:13:46
- Publisher:
- CDS
- Description:
- The percentage of massive main-sequence OB stars in binary systems is thought to be as high as 100%. However, very few Galactic binary red supergiants (RSGs) have been identified, despite the fact that these stars are the evolved descendants of OB stars. As shown in our recent paper, binary RSGs will likely have B-type companions, as dictated by stellar evolution considerations. Such a system will have a very unique photometric signature due to the shape of the spectral energy distribution. Using photometric cutoffs, it should therefore be possible to detect candidate RSG+B star binary systems. Here we present our spectroscopic follow-up observations of such candidates. Out of our initial list of 280 candidates in M31 and M33, we observed 149 and confirmed 63 as newly discovered RSG+B star binary systems. Additional spectra of four candidate systems in the Small Magellanic Cloud confirmed all of them as new RSG+B star binaries including the first known RSG+Be star system. By fitting BSTAR06 and MARCS model atmospheres to the newly obtained spectra, we place estimates on the temperatures and subtypes of both the B stars and RSGs. Overall, we have found 87 new RSG+B star binary systems in M31, M33 and the Small and Large Magellanic Clouds. Our future studies are aimed at determining the binary fraction of RSGs.
- ID:
- ivo://CDS.VizieR/J/ApJ/794/35
- Title:
- Binary white dwarfs atmospheric parameters
- Short Name:
- J/ApJ/794/35
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T_eff_<~10000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.
- ID:
- ivo://CDS.VizieR/J/AJ/152/180
- Title:
- Bolometric fluxes of eclipsing binaries in Tycho-2
- Short Name:
- J/AJ/152/180
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present fits to the broadband photometric spectral energy distributions (SEDs) of 158 eclipsing binaries (EBs) in the Tycho-2 catalog. These EBs were selected because they have highly precise stellar radii, effective temperatures, and in many cases metallicities previously determined in the literature, and thus have bolometric luminosities that are typically good to <~10%. In most cases the available broadband photometry spans a wavelength range 0.4-10{mu}m, and in many cases spans 0.15-22{mu}m. The resulting SED fits, which have only extinction as a free parameter, provide a virtually model-independent measure of the bolometric flux at Earth. The SED fits are satisfactory for 156 of the EBs, for which we achieve typical precisions in the bolometric flux of {\simeq}3%. Combined with the accurately known bolometric luminosity, the result for each EB is a predicted parallax that is typically precise to <~5%. These predicted parallaxes-with typical uncertainties of 200{mu}as-are 4-5 times more precise than those determined by Hipparcos for 99 of the EBs in our sample, with which we find excellent agreement. There is no evidence among this sample for significant systematics in the Hipparcos parallaxes of the sort that notoriously afflicted the Pleiades measurement. The EBs are distributed over the entire sky, span more than 10mag in brightness, reach distances of more than 5kpc, and in many cases our predicted parallaxes should also be more precise than those expected from the Gaia first data release. The EBs studied here can thus serve as empirical, independent benchmarks for these upcoming fundamental parallax measurements.
- ID:
- ivo://CDS.VizieR/J/A+A/498/527
- Title:
- Calibration of Stromgren phot. for late-type stars
- Short Name:
- J/A+A/498/527
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The use of model atmospheres for deriving stellar fundamental parameters, such as Teff, log(g), and [Fe/H], will increase as we find and explore extreme stellar populations where empirical calibrations are not yet available. Moreover, calibrations for upcoming large satellite missions of new spectrophotometric indices, similar to the uvby-Hbeta system, will be needed. We aim to test the power of theoretical calibrations based on a new generation of MARCS models by comparisons with observational photometric data. We calculated synthetic uvby-Hbeta colour indices from synthetic spectra. A sample of 367 field stars, as well as stars in globular clusters, is used for a direct comparison of the synthetic indices versus empirical data and for scrutizing the possibilities of theoretical calibrations for temperature, metallicity, and gravity. We show that the temperature sensitivity of the synthetic (b-y) colour is very close to its empirical counterpart, whereas the temperature scale based upon Hbeta shows a slight offset. The theoretical metallicity sensitivity of the m1 index (and for G-type stars its combination with c1) is somewhat higher than the empirical one, based upon spectroscopic determinations. The gravity sensitivity of the synthetic c1 index shows satisfactory behaviour when compared to observations of F stars. For stars cooler than the sun, a deviation is significant in the c1-(b-y) diagram. The theoretical calibrations of (b-y), (v-y), and c1 seem to work well for Pop II stars and lead to effective temperatures for globular cluster stars supporting recent claims that atomic diffusion occurs in stars near the turnoff point of NGC 6397. Synthetic colours of stellar atmospheres can indeed be used, in many cases, to derive reliable fundamental stellar parameters. The deviations seen when compared to observational data could be due to incomplete linelists but are possibly also due to the effects of assuming plane-parallel or spherical geometry and LTE.
- ID:
- ivo://CDS.VizieR/J/AJ/154/108
- Title:
- California-Kepler Survey (CKS). II. Properties
- Short Name:
- J/AJ/154/108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California-Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetary radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.