- ID:
- ivo://CDS.VizieR/J/ApJ/743/138
- Title:
- Spectroscopic survey of bright white dwarfs
- Short Name:
- J/ApJ/743/138
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have conducted a spectroscopic survey of over 1300 bright (V<=17.5), hydrogen-rich white dwarfs based largely on the last published version of the McCook & Sion (1999ApJS..121....1M, Cat. III/235) catalog. The complete results from our survey, including the spectroscopic analysis of over 1100 DA white dwarfs, are presented. High signal-to-noise ratio optical spectra were obtained for each star and were subsequently analyzed using our standard spectroscopic technique where the observed Balmer line profiles are compared to synthetic spectra computed from the latest generation of model atmospheres appropriate for these stars. First, we present the spectroscopic content of our sample, which includes many misclassifications as well as several DAB, DAZ, and magnetic white dwarfs. Next, we look at how the new Stark broadening profiles affect the determination of the atmospheric parameters. When necessary, specific models and analysis techniques are used to derive the most accurate atmospheric parameters possible. In particular, we employ M dwarf templates to obtain better estimates of the atmospheric parameters for those white dwarfs that are in DA+dM binary systems.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/535/A107
- Title:
- Spectroscopic survey of 479 thick disc stars
- Short Name:
- J/A+A/535/A107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In the era of large spectroscopic surveys, Galactic archaeology aims to understand the formation and evolution of the Milky Way by means of large datasets. In particular, the kinematic and chemical study of the thick disc can give valuable information on the merging history of the Milky Way. Our aim is to detect and characterise the Galactic thick disc chemically and dynamically by analysing F, G and K stars, whose atmospheres reflect their initial chemical composition. We performed a spectroscopic survey of nearly 700 stars probing the Galactic thick disc far from the solar neighbourhood towards the Galactic coordinates (l~277{deg}, b~47{deg}). The derived effective temperatures, surface gravities and overall metallicities were then combined with stellar evolution isochrones, radial velocities and proper motions to derive the distances, kinematics and orbital parameters of the sample stars. The targets belonging to each Galactic component (thin disc, thick disc, halo) were selected either on their kinematics or according to their position above the Galactic plane, and the vertical gradients were also estimated.
- ID:
- ivo://CDS.VizieR/J/A+A/612/A96
- Title:
- Spectroscopic survey of youngest field stars II.
- Short Name:
- J/A+A/612/A96
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Star formation in the solar neighborhood is mainly traced by young stars in open clusters, associations, and in the field, which can be identified, for example, by their X-ray emission. The determination of stellar parameters for the optical counterparts of X-ray sources is crucial for a full characterization of these stars. This work extends the spectroscopic study of the RasTyc sample, obtained by the cross-correlation of the TYCHO and ROSAT All-Sky Survey catalogs, to stars fainter than V=9.5mag and aims to identify sparse populations of young stars in the solar neighborhood. We acquired 625 high-resolution spectra for 443 presumably young stars with four different instruments in the northern hemisphere. The radial and rotational velocity (vsini) of our targets were measured by means of the cross-correlation technique, which is also helpful to discover single-lined (SB1), double-lined spectroscopic binaries (SB2), and multiple systems. We used the code ROTFIT to perform an MK spectral classification and to determine the atmospheric parameters (Teff, logg, [Fe/H]) and and vsini of the single stars and SB1 systems. For these objects, we used the spectral subtraction of slowly rotating templates to measure the equivalent widths of the H{alpha} and LiI-6708A lines, which enabled us to derive their chromospheric activity level and lithium abundance. We made use of Gaia DR1 parallaxes and proper motions to locate the targets in the HR diagram and to compute the space velocity components of the youngest objects. We find a remarkable percentage (at least 35%) of binaries and multiple systems. On the basis of the lithium abundance, the sample of single stars and SB1 systems appears to be mostly (about 60%) composed of stars younger than the members of the UMa cluster. The remaining sources are in the age range between the UMa and Hyades clusters (about 20%) or older (20%). In total, we identify 42 very young (PMS-like) stars, which lie above or very close to the Pleiades upper envelope of the lithium abundance. A significant percentage (about 12%) of evolved stars (giants and subgiants) is also present in our sample. Some of these stars are also lithium rich (A(Li)>1.4).
- ID:
- ivo://CDS.VizieR/J/AJ/155/256
- Title:
- Spectroscopic validation of RAVE metal-poor stars
- Short Name:
- J/AJ/155/256
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from a medium-resolution (R~2000) spectroscopic follow-up campaign of 1694 bright (V<13.5), very metal-poor star candidates from the RAdial Velocity Experiment (RAVE). Initial selection of the low-metallicity targets was based on the stellar parameters published in RAVE Data Releases 4 (Cat. III/272) and 5 (Cat. III/279). Follow up was accomplished with the Gemini-N and Gemini-S, the ESO/NTT, the KPNO/Mayall, and the SOAR telescopes. The wavelength coverage for most of the observed spectra allows for the determination of carbon and {alpha}-element abundances, which are crucial for considering the nature and frequency of the carbon-enhanced metal-poor (CEMP) stars in this sample. We find that 88% of the observed stars have [Fe/H]=< -1.0, 61% have [Fe/H]=< -2.0, and 3% have [Fe/H]=< -3.0 (with four stars at [Fe/H]=< -3.5). There are 306 CEMP star candidates in this sample, and we identify 169 CEMP Group I, 131 CEMP Group II, and 6 CEMP Group III stars from the A(C) versus [Fe/H] diagram. Inspection of the [{alpha}/C] abundance ratios reveals that five of the CEMP Group II stars can be classified as "mono-enriched second-generation" stars. Gaia DR1 matches were found for 734 stars, and we show that transverse velocities can be used as a confirmatory selection criteria for low-metallicity candidates. Selected stars from our validated list are being followed-up with high-resolution spectroscopy to reveal their full chemical-abundance patterns for further studies.
- ID:
- ivo://CDS.VizieR/J/ApJ/885/53
- Title:
- Spectroscopy & HST photometry of galaxy Leo V
- Short Name:
- J/ApJ/885/53
- Date:
- 16 Mar 2022 09:00:29
- Publisher:
- CDS
- Description:
- The ultra-faint dwarf galaxy Leo V has shown both photometric overdensities and kinematic members at large radii, along with a tentative kinematic gradient, suggesting that it may have undergone a close encounter with the Milky Way. We investigate these signs of disruption through a combination of (I) high precision photometry obtained with the Hubble Space Telescope (HST), (II) two epochs of stellar spectra obtained with the Hectochelle Spectrograph on the MMT, and (III) measurements from the Gaia mission. Using the HST data, we examine one of the reported stream-like overdensities at large radii, and conclude that it is not a true stellar stream, but instead a clump of foreground stars and background galaxies. Our spectroscopic analysis shows that one known member star is likely a binary, and challenges the membership status of three others, including two distant candidates that had formerly provided evidence for overall stellar mass loss. We also find evidence that the proposed kinematic gradient across Leo V might be due to small number statistics. We update the systemic proper motion of Leo V, finding ({mu}_{alpha}_/cos{delta},{mu}_{delta}_)= (0.009{+/-}0.560,-0.777{+/-}0 .314)mas/yr, which is consistent with its reported orbit that did not put Leo V at risk of being disturbed by the Milky Way. These findings remove most of the observational clues that suggested Leo V was disrupting; however, we also find new plausible member stars, two of which are located >5 half-light radii from the main body. These stars require further investigation. Therefore, the nature of Leo V still remains an open question.
- ID:
- ivo://CDS.VizieR/J/ApJ/700/1216
- Title:
- Spectroscopy of Be stars in open clusters
- Short Name:
- J/ApJ/700/1216
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We recently discovered a large number of highly active Be stars in the open cluster NGC 3766, making it an excellent location to study the formation mechanism of Be star disks. To explore whether similar disk appearances and/or disappearances are common among the Be stars in other open clusters, we present here multiple epochs of H{alpha} spectroscopy for 296 stars in eight open clusters. We identify 12 new transient Be stars and confirm 17 additional Be stars with relatively stable disks. By comparing the H{alpha} equivalent widths to the photometric y-H{alpha} colors, we present a method to estimate the strength of the H{alpha} emission when spectroscopy is not available. For a subset of 128 stars in four open clusters, we also use blue optical spectroscopy and available Stromgren photometry to measure their projected rotational velocities, effective temperatures, and polar surface gravities. We combine our Be star detections from these four clusters to investigate physical differences between the transient Be stars, stable Be stars, and normal B-type stars with no line emission. Both types of Be stars are faster rotating populations than normal B-type stars, and we find no significant physical differences between the transient and stable Be stars in our sample.
- ID:
- ivo://CDS.VizieR/J/AJ/151/3
- Title:
- Spectroscopy of binary stars
- Short Name:
- J/AJ/151/3
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Young, intermediate-mass stars are experiencing renewed interest as targets for direct-imaging planet searches. However, these types of stars are part of multiple systems more often than not. Close stellar companions affect the formation and orbital architecture of planetary systems, and the properties of the companions can help constrain the binary formation mechanism. Unfortunately, close companions are difficult and expensive to detect with imaging techniques. In this paper, we describe the direct spectral detection method wherein a high-resolution spectrum of the primary is cross-correlated against a template for a companion star. Variants of this method have previously been used to search for stellar, brown dwarf, and even planetary companions. We show that the direct spectral detection method can detect companions as late as M-type orbiting A0 or earlier primary stars in a single epoch on small-aperture telescopes. In addition to estimating the detection limits, we determine the sources of uncertainty in characterizing the companion temperature, and find that large systematic biases can exist. After calibrating the systematic biases with synthetic binary star observations, we apply the method to a sample of 34 known binary systems with an A- or B-type primary star. We detect nine total companions, including four of the five known companions with literature temperatures between 4000K<T<6000K, the temperature range for which our method is optimized. We additionally characterize the companion for the first time in two previously single-lined binary systems and one binary identified with speckle interferometry. This method provides an inexpensive way to use small-aperture telescopes to detect binary companions with moderate mass ratios, and is competitive with high-resolution imaging techniques inside ~100-200mas.
- ID:
- ivo://CDS.VizieR/J/AJ/152/40
- Title:
- Spectroscopy of 341 bright A- and B-type stars
- Short Name:
- J/AJ/152/40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Binary stars and higher-order multiple systems are a ubiquitous outcome of star formation, especially as the system mass increases. The companion mass-ratio distribution is a unique probe into the conditions of the collapsing cloud core and circumstellar disk(s) of the binary fragments. Inside a~1000AU the disks from the two forming stars can interact, and additionally companions can form directly through disk fragmentation. We should, therefore, expect the mass-ratio distribution of close companions (a<~100AU) to differ from that of wide companions. This prediction is difficult to test using traditional methods, in particular, with intermediate-mass primary stars, for a variety of observational reasons. We present the results of a survey searching for companions to A- and B-type stars using the direct spectral detection method, which is sensitive to late-type companions within ~1'' of the primary and which has no inner working angle. We estimate the temperatures and surface gravity of most of the 341 sample stars and derive their masses and ages. We additionally estimate the temperatures and masses of the 64 companions we find, 23 of which are new detections. We find that the mass-ratio distribution for our sample has a maximum near q~0.3. Our mass-ratio distribution has a very different form than in previous works, where it is usually well-described by a power law, and indicates that close companions to intermediate-mass stars experience significantly different accretion histories or formation mechanisms than wide companions.
- ID:
- ivo://CDS.VizieR/J/AJ/145/102
- Title:
- Spectroscopy of bright M dwarfs in the northern sky
- Short Name:
- J/AJ/145/102
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a spectroscopic catalog of the 1564 brightest (J<9) M dwarf candidates in the northern sky, as selected from the SUPERBLINK proper motion catalog. Observations confirm 1408 of the candidates to be late-K and M dwarfs with spectral subtypes K7-M6. From the low ({mu}>40mas/yr) proper motion limit and high level of completeness of the SUPERBLINK catalog in that magnitude range, we estimate that our spectroscopic census most likely includes >90% of all existing, northern-sky M dwarfs with apparent magnitude J<9. Only 682 stars in our sample are listed in the Third Catalog of Nearby Stars (CNS3); most others are relative unknowns and have spectroscopic data presented here for the first time. Spectral subtypes are assigned based on spectral index measurements of CaH and TiO molecular bands; a comparison of spectra from the same stars obtained at different observatories, however, reveals that spectral band index measurements are dependent on spectral resolution, spectrophotometric calibration, and other instrumental factors. As a result, we find that a consistent classification scheme requires that spectral indices be calibrated and corrected for each observatory/instrument used. After systematic corrections and a recalibration of the subtype-index relationships for the CaH2, CaH3, TiO5, and TiO6 spectral indices, we find that we can consistently and reliably classify all our stars to a half-subtype precision. The use of corrected spectral indices further requires us to recalibrate the {zeta} parameter, a metallicity indicator based on the ratio of TiO and CaH optical bandheads. However, we find that our {zeta} values are not sensitive enough to diagnose metallicity variations in dwarfs of subtypes M2 and earlier (+/-0.5dex accuracy) and are only marginally useful at later M3-M5 subtypes (+/-0.2dex accuracy). Fits of our spectra to the Phoenix atmospheric model grid are used to estimate effective temperatures. These suggest the existence of a plateau in the M1-M3 subtype range, in agreement with model fits of infrared spectra but at odds with photometric determinations of T_eff_. Existing geometric parallax measurements are extracted from the literature for 624 stars, and are used to determine spectroscopic and photometric distances for all the other stars. Active dwarfs are identified from measurements of H{alpha} equivalent widths, and we find a strong correlation between H{alpha} emission in M dwarfs and detected X-ray emission from ROSAT and/or a large UV excess in the GALEX point source catalog. We combine proper motion data and photometric distances to evaluate the (U, V, W) distribution in velocity space, which is found to correlate tightly with the velocity distribution of G dwarfs in the solar neighborhood. However, active stars show a smaller dispersion in their space velocities, which is consistent with those stars being younger on average. Our catalog will be most useful to guide the selection of the best M dwarf targets for exoplanet searches, in particular those using high-precision radial velocity measurements.
- ID:
- ivo://CDS.VizieR/J/ApJ/730/128
- Title:
- Spectroscopy of DA WD from the SDSS-DR4
- Short Name:
- J/ApJ/730/128
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an improved spectroscopic and photometric analysis of hydrogen-line DA white dwarfs from the Sloan Digital Sky Survey Data Release 4 (SDSS DR4) based on model atmospheres that include improved Stark broadening profiles with non-ideal gas effects. We also perform a careful visual inspection of all spectroscopic fits with high signal-to-noise ratios (S/Ns>12) and present improved atmospheric parameters (T_eff_ and logg) for each white dwarf. Through a comparison of spectroscopic and photometric temperatures, we report the discovery of 35 DA+DB/DC double degenerate candidates and two helium-rich DA stars. We also determine that a cutoff at S/N=15 optimizes the size and quality of the sample for computing the mean mass of DA white dwarfs, for which we report a value of 0.613M_{sun}_. We compare our results to previous analyses of the SDSS DR4 and find a good agreement if we account for the shift produced by the improved Stark profiles. Finally, the properties of DA white dwarfs in the SDSS are weighed against those of the Villanova White Dwarf Catalog sample of Gianninas et al. (2009JPhCS.172a2021G).