- ID:
- ivo://CDS.VizieR/J/A+A/477/593
- Title:
- X-ray properties of Carina OB1 association
- Short Name:
- J/A+A/477/593
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- X-ray properties of the stellar population in the Carina OB1 association are examined with special emphasis on early-type stars. Their spectral characteristics provide some clues to understanding the nature of X-ray formation mechanisms in the winds of single and binary early-type stars. A timing and spectral analysis of five observations with XMM-Newton is performed using various statistical tests and thermal spectral models. 235 point sources have been detected within the field of view. Several of these sources are probably pre-main sequence stars with characteristic short-term variability. Seven sources are possible background AGNs. Spectral analysis of twenty three sources of type OB and WR 25 was performed. We derived spectral parameters of the sources and their fluxes in three energy bands. Estimating the interstellar absorption for every source and the distance to the nebula, we derived X-ray luminosities of these stars and compared them to their bolometric luminosities. We discuss possible reasons for the fact that, on average, the observed X-ray properties of binary and single early type stars are not very different, and give several possible explanations.
« Previous |
201 - 208 of 208
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/184/84
- Title:
- X-ray sources in Cyg OB2 region
- Short Name:
- J/ApJS/184/84
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalogue of 1696 X-ray sources detected in the massive star forming region (SFR) Cygnus OB2 and extracted from two archival Chandra observations of the center of the region. A deep source extraction routine, exploiting the low background rates of Chandra observations was employed to maximize the number of sources extracted. Observations at other wavelengths were used to identify low count-rate sources and remove likely spurious sources. Monte Carlo simulations were also used to assess the authenticity of these sources. X-ray spectra were fitted with thermal plasma models to characterize the objects and X-ray light curves were analyzed to determine their variability. We used a Bayesian technique to identify optical or near-IR counterparts for 1501 (89%) of our sources, using deep observations from the INT Photometric H-alpha Survey, the Two Micron All Sky Survey, and the UKIRT Infrared Deep Sky Survey-Galactic plane Survey. 755 (45%) of these objects have six-band r', H-alpha, i', J, H, and K optical and near-IR photometry. From an analysis of the Poisson false-source probabilities for each source we estimate that our X-ray catalogue includes <1% of false sources, and an even lower fraction when only sources with optical or near-IR associations are considered. A Monte Carlo simulation of the Bayesian matching scheme allows this method to be compared to more simplified matching techniques and enables the various sources of error to be quantified. The catalogue of 1696 objects presented here includes X-ray broad band fluxes, model fits, and optical and near-IR photometry in what is one of the largest X-ray catalogue of a single SFR to date. The high number of stellar X-ray sources detected from relatively shallow observations confirms the status and importance of Cygnus OB2 as one of our Galaxy's most massive SFRs.
- ID:
- ivo://CDS.VizieR/J/MNRAS/451/3089
- Title:
- Young clumps embedded in IRDC
- Short Name:
- J/MNRAS/451/3089
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalogue of starless and protostellar clumps associated with infrared dark clouds (IRDCs) in a 40 degrees wide region of the inner Galactic plane (|b|<=1). We have extracted the far-infrared (FIR) counterparts of 3493 IRDCs with known distance in the Galactic longitude range 15<=l<=55 and searched for the young clumps using Herschel infrared Galactic plane survey, the survey of the Galactic plane carried out with the Herschel satellite. Each clump is identified as a compact source detected at 160, 250 and 350um. The clumps have been classified as protostellar or starless, based on their emission (or lack of emission) at 70um. We identify 1723 clumps, 1056 (61%) of which are protostellar and 667 (39%) starless. These clumps are found within 764 different IRDCs, 375 (49%) of which are only associated with protostellar clumps, 178 (23%) only with starless clumps, and 211 (28%) with both categories of clumps. The clumps have a median mass of ~250M_{sun}_ and range up to >10^4^M_{sun}_ in mass and up to 10^5^L_{sun}_ in luminosity. The mass-radius distribution shows that almost 30% of the starless clumps identified in this survey could form high-mass stars; however these massive clumps are confined in only 4% of the IRDCs. Assuming a minimum mass surface density threshold for the formation of high-mass stars, the comparison of the numbers of massive starless clumps and those already containing embedded sources suggests an upper limit lifetime for the starless phase of ~10^5^yr for clumps with a mass M>500M_{sun}_.
- ID:
- ivo://CDS.VizieR/J/A+A/549/A57
- Title:
- Young, massive star candidates in Sgr A*
- Short Name:
- J/A+A/549/A57
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Nuclear star clusters (NSCs) are ubiquitous at the centers of galaxies. They show mixed stellar populations and the spectra of many NSCs indicate recent events of star formation. However, it is impossible to resolve external NSCs in order to examine the relevant processes. The Milky Way NSC, on the other hand, is close enough to be resolved into its individual stars and presents therefore a unique template for NSCs in general. Young, massive stars have been found by systematic spectroscopic studies at projected distances R<~0.5pc from the supermassive black hole, Sagittarius A* (Sgr A*). In recent years, increasing evidence has been found for the presence of young, massive stars also at R>0.5pc. Our goal in this work is a systematic search for young, massive star candidates throughout the entire region within R~2.5pc of the black hole.
- ID:
- ivo://CDS.VizieR/J/A+A/626/A17
- Title:
- Young population in Vela-Puppis region
- Short Name:
- J/A+A/626/A17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Vela-Puppis region is known to host the Vela OB2 association as well as several young clusters featuring OB and pre-main-sequence stars. Several spatial and kinematic subgroups have been identified in recent years. By grouping stars based on their positions and velocity, we can address the question of the dynamical history of the region and the mechanisms that drove stellar formation. The Gaia DR2 astrometry and photometry enables us to characterise the 3D spatial and 3D kinematic distribution of young stars and to estimate the ages of the identified components. We used an unsupervised classification method to group stars based on their proper motions and parallax. We studied the expansion rates of the different identified groups based on 3D velocities and on corrected tangential velocities. We used theoretical isochrones to estimate ages. The young stars can be separated into seven main groups of different ages and kinematical distribution. All groups are found to be expanding, although the expansion is mostly not isotropic. The size of the region, the age substructure, and the anisotropic expansion rates are compatible with a prolonged period of star formation in a turbulent molecular cloud. The current kinematics of the stars cannot be explained by internal processes alone (such as gas expulsion).
- ID:
- ivo://CDS.VizieR/J/MNRAS/410/190
- Title:
- Young runaway stars within 3kpc
- Short Name:
- J/MNRAS/410/190
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Traditionally runaway stars are O and B type stars with large peculiar velocities. We want to extend this definition to young stars (up to ~50Myr) of any spectral type and identify those present in the Hipparcos catalogue applying different selection criteria such as peculiar space velocities or peculiar one-dimensional velocities. Runaway stars are important to study the evolution of multiple star systems or star clusters as well as to identify origins of neutron stars. We compile distances, proper motions, spectral types, luminosity classes, V magnitudes and B-V colours and utilise evolutionary models from different authors to obtain star ages and study a sample of 7663 young Hipparcos stars within 3kpc from the Sun. Radial velocities are obtained from the literature. We investigate the distributions of the peculiar spatial velocity, the peculiar radial velocity as well as the peculiar tangential velocity and its one-dimensional components and obtain runaway star probabilities for each star in the sample. In addition, we look for stars that are situated outside any OB association or OB cluster and the Galactic plane as well as stars of which the velocity vector points away from the median velocity vector of neighbouring stars or the surrounding local OB association/cluster although the absolute velocity might be small. We find a total of 2547 runaway star candidates (with a contamination of normal Population I stars of 20 per cent at most). Thus, after subtraction of those 20 per cent, the runaway frequency among young stars is about 27 per cent. We compile a catalogue of runaway stars which will be available via VizieR.
- ID:
- ivo://CDS.VizieR/J/A+A/594/A34
- Title:
- Young star groups in NGC 300
- Short Name:
- J/A+A/594/A34
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The purpose of this work is to understand the global characteristics of the stellar populations in NGC 300. In particular, we focused our attention on searching young star groups and study their hierarchical organization. The proximity and orientation of this Sculptor Group galaxy make it an ideal candidate for this study. The research was conducted using archival point spread function (PSF) fitting photometry measured from images in multiple bands obtained with the Advanced Camera for Surveys of the Hubble Space Telescope (ACS/HST). Using the path linkage criterion (PLC), we cataloged young star groups and analyzed them from the observation of individual stars in the galaxy NGC 300. We also built stellar density maps from the bluest stars and applied the SExtractor code to identify overdensities. This method provided an additional tool for the detection of young stellar structures. By plotting isocontours over the density maps and comparing the two methods, we could infer and delineate the hierarchical structure of the blue population in the galaxy. For each region of a detected young star group, we estimated the size and derived the radial surface density profiles for stellar populations of different color (blue and red). A statistical decontamination of field stars was performed for each region. In this way it was possible to build the color-magnitude diagrams (CMD) and compare them with theoretical evolutionary models. We also constrained the present-day mass function (PDMF) per group by estimating a value for its slope. The blue population distribution in NGC 300 clearly follows the spiral arms of the galaxy, showing a hierarchical behavior in which the larger and loosely distributed structures split into more compact and denser ones over several density levels. We created a catalog of 1147 young star groups in six fields of the galaxy NGC 300, in which we present their fundamental characteristics. The mean and the mode radius values obtained from the size distribution are both 25pc, in agreement with the value for the Local Group and nearby galaxies. Additionally, we found an average PDMF slope that is compatible with the Salpeter value.
- ID:
- ivo://CDS.VizieR/J/ApJ/575/354
- Title:
- Young stellar objects in the NGC 1333
- Short Name:
- J/ApJ/575/354
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 1333, a highly active star formation region within the Perseus molecular cloud complex, has been observed with the ACIS-I detector on board the Chandra X-Ray Observatory. In our image with a sensitivity limit of ~19^28^erg/s, we detect 127 X-ray sources, most with subarcsecond positional accuracy. While 32 of these sources appear to be foreground stars and extragalactic background, 95 X-ray sources are Identified with known cluster members.