- ID:
- ivo://CDS.VizieR/J/AJ/157/242
- Title:
- An updated study of potential targets for Ariel
- Short Name:
- J/AJ/157/242
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Ariel has been selected as ESA's M4 mission for launch in 2028 and is designed for the characterization of a large and diverse population of exoplanetary atmospheres to provide insights into planetary formation and evolution within our Galaxy. Here we present a study of Ariel's capability to observe currently known exoplanets and predicted Transiting Exoplanet Survey Satellite (TESS) discoveries. We use the Ariel radiometric model (ArielRad) to simulate the instrument performance and find that ~2000 of these planets have atmospheric signals which could be characterized by Ariel. This list of potential planets contains a diverse range of planetary and stellar parameters. From these we select an example mission reference sample (MRS), comprised of 1000 diverse planets to be completed within the primary mission life, which is consistent with previous studies. We also explore the mission capability to perform an in-depth survey into the atmospheres of smaller planets, which may be enriched or secondary. Earth-sized planets and super-Earths with atmospheres heavier than H/He will be more challenging to observe spectroscopically. However, by studying the time required to observe ~110 Earth-sized/super-Earths, we find that Ariel could have substantial capability for providing in-depth observations of smaller planets. Trade-offs between the number and type of planets observed will form a key part of the selection process and this list of planets will continually evolve with new exoplanet discoveries replacing predicted detections. The Ariel target list will be constantly updated and the MRS re-selected to ensure maximum diversity in the population of planets studied during the primary mission life.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/888/43
- Title:
- APOGEE-Kepler Cool Dwarf star ages determination
- Short Name:
- J/ApJ/888/43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use models of stellar angular momentum evolution to determine ages for ~500 stars in the APOGEE-Kepler Cool Dwarfs sample. We focus on lower-main-sequence stars, where other age-dating tools become ineffective. Our age distributions are compared to those derived from asteroseismic and giant samples and solar analogs. We are able to recover gyrochronological ages for old, lower-main-sequence stars, a remarkable improvement over prior work in hotter stars. Under our model assumptions, our ages have a median relative uncertainty of 14%, comparable to the age precision inferred for more massive stars using traditional methods. We investigate trends of Galactic {alpha}-enhancement with age, finding evidence of a detection threshold between the age of the oldest {alpha}-poor stars and that of the bulk {alpha}-rich population. We argue that gyrochronology is an effective tool reaching ages of 10-12Gyr in K and early M dwarfs. Finally, we present the first effort to quantify the impact of detailed abundance patterns on rotational evolution. We estimate a ~15% bias in age for cool, {alpha}-enhanced (+0.4dex) stars when standard solar-abundance-pattern rotational models are used for age inference, rather than models that appropriately account for {alpha}-enrichment.
- ID:
- ivo://CDS.VizieR/J/AJ/132/1851
- Title:
- Arecibo obs. of formaldehyde in L1551
- Short Name:
- J/AJ/132/1851
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report observations of the formaldehyde (H_2_CO) 6cm (4.8GHz) line toward L1551. The observations were conducted with the Arecibo Telescope (beam FWHP~1') to verify the tentative detection of H_2_CO thermal emission reported by Duncan and collaborators in 1987MNRAS.224..721D. The H_2_CO emission lines were expected to be present with a signal-to-noise ratio of >~10 in our spectra. However, we did not detect H_2_CO emission; i.e., our data rule out their tentative detection. The absence of H_2_CO emission is also confirmed by the fact that the H_2_CO line profiles at the two positions of expected emission are well fitted by a single absorption component (accounting for the hyperfine structure of the line) in one of the positions and by a single absorption line plus a red-wing absorption component in the second position. The Orion BN/KL region remains the only H_2_CO 6cm thermal emitter known. Our observations also demonstrate that the H_2_CO 6cm absorption line traces not only the quiescent molecular cloud but also the kinematics associated with the star formation process in L1551-IRS5.
- ID:
- ivo://CDS.VizieR/J/ApJ/725/331
- Title:
- Astrometry in the Galactic Center
- Short Name:
- J/ApJ/725/331
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present significantly improved proper motion measurements of the Milky Way's central stellar cluster. These improvements are made possible by refining our astrometric reference frame with a new geometric optical distortion model for the W. M. Keck II 10m telescope's adaptive optics camera (NIRC2) in its narrow field mode. For the first time, this distortion model is constructed from on-sky measurements and is made available to the public in the form of FITS files. When applied to widely dithered images, it produces residuals in the separations of stars that are a factor of ~3 smaller compared with the outcome using previous models. By applying this new model, along with corrections for differential atmospheric refraction, to widely dithered images of SiO masers at the Galactic center (GC), we improve our ability to tie into the precisely measured radio Sgr A*-rest frame. The resulting infrared reference frame is ~2-3 times more accurate and stable than earlier published efforts. In this reference frame, Sgr A* is localized to within a position of 0.6mas and a velocity of 0.09mas/yr, or ~3.4km/s at 8kpc (1{sigma}). Also, proper motions for members of the central stellar cluster are more accurate, although less precise, due to the limited number of these wide field measurements. We define a reference frame with SiO masers and this reference frame's stability should improve steadily with future measurements of the SiO masers in this region ({propto}t^-3/2^). This is essential for achieving the necessary reference frame stability required to detect the effects of general relativity and extended mass on short-period stars at the GC.
- ID:
- ivo://CDS.VizieR/J/ApJ/805/57
- Title:
- Atmosphere parameters model-derived for PMS & BDs
- Short Name:
- J/ApJ/805/57
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We test state-of-the-art model atmospheres for young very-low-mass stars and brown dwarfs in the infrared, by comparing the predicted synthetic photometry over 1.2-24{mu}m to the observed photometry of M-type spectral templates in star-forming regions. We find that (1) in both early and late young M types, the model atmospheres imply effective temperatures (Teff) several hundred Kelvin lower than predicted by the standard pre-main sequence (PMS) spectral type-Teff conversion scale (based on theoretical evolutionary models). It is only in the mid-M types that the two temperature estimates agree. (2) The Teff discrepancy in the early M types (corresponding to stellar masses >~0.4M_{sun}_ at ages of a few Myr) probably arises from remaining uncertainties in the treatment of atmospheric convection within the atmospheric models, whereas in the late M types it is likely due to an underestimation of dust opacity. (3) The empirical and model-atmosphere J-band bolometric corrections are both roughly flat, and similar to each other, over the M-type Teff range. Thus the model atmospheres yield reasonably accurate bolometric luminosities (Lbol), but lead to underestimations of mass and age relative to evolutionary expectations (especially in the late M types) due to lower Teff. We demonstrate this for a large sample of young Cha I and Taurus sources. (4) The trends in the atmospheric model J-K_s_ colors, and their deviations from the data, are similar at PMS and main sequence ages, suggesting that the model dust opacity errors we postulate here for young ages also apply at field ages.
- ID:
- ivo://CDS.VizieR/J/ApJ/804/146
- Title:
- Atmospheric parameters for nearby B-F stars
- Short Name:
- J/ApJ/804/146
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Age determination is undertaken for nearby early type (BAF) stars, which constitute attractive targets for high-contrast debris disk and planet imaging surveys. Our analysis sequence consists of acquisition of ubvy{beta} photometry from catalogs, correction for the effects of extinction, interpolation of the photometry onto model atmosphere grids from which atmospheric parameters are determined, and finally, comparison to the theoretical isochrones from pre-main sequence through post-main sequence stellar evolution models, accounting for the effects of stellar rotation. We calibrate and validate our methods at the atmospheric parameter stage by comparing our results to fundamentally determined T_eff_ and log g values. We validate and test our methods at the evolutionary model stage by comparing our results on ages to the accepted ages of several benchmark open clusters (IC2602, {alpha} Persei, Pleiades, Hyades). Finally, we apply our methods to estimate stellar ages for 3493 field stars, including several with directly imaged exoplanet candidates.
- ID:
- ivo://CDS.VizieR/J/MNRAS/414/2602
- Title:
- Automated classification of HIP variables
- Short Name:
- J/MNRAS/414/2602
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an evaluation of the performance of an automated classification of the Hipparcos periodic variable stars into 26 types. The sub-sample with the most reliable variability types available in the literature is used to train supervised algorithms to characterize the type dependencies on a number of attributes. The most useful attributes evaluated with the random forest methodology include, in decreasing order of importance, the period, the amplitude, the V-I colour index, the absolute magnitude, the residual around the folded light-curve model, the magnitude distribution skewness and the amplitude of the second harmonic of the Fourier series model relative to that of the fundamental frequency.
- ID:
- ivo://CDS.VizieR/J/AJ/158/25
- Title:
- Automated triage and vetting of TESS candidates
- Short Name:
- J/AJ/158/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NASA's Transiting Exoplanet Survey Satellite (TESS) presents us with an unprecedented volume of space-based photometric observations that must be analyzed in an efficient and unbiased manner. With at least ~1000000 new light curves generated every month from full-frame images alone, automated planet candidate identification has become an attractive alternative to human vetting. Here we present a deep learning model capable of performing triage and vetting on TESS candidates. Our model is modified from an existing neural network designed to automatically classify Kepler candidates, and is the first neural network to be trained and tested on real TESS data. In triage mode, our model can distinguish transit-like signals (planet candidates and eclipsing binaries) from stellar variability and instrumental noise with an average precision (the weighted mean of precisions over all classification thresholds) of 97.0% and an accuracy of 97.4%. In vetting mode, the model is trained to identify only planet candidates with the help of newly added scientific domain knowledge, and achieves an average precision of 69.3% and an accuracy of 97.8%. We apply our model on new data from Sector 6, and present 288 new signals that received the highest scores in triage and vetting and were also identified as planet candidates by human vetters. We also provide a homogeneously classified set of TESS candidates suitable for future training.
- ID:
- ivo://CDS.VizieR/J/AJ/158/58
- Title:
- Autoregressive planet search for Kepler stars
- Short Name:
- J/AJ/158/58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The 4 yr light curves of 156717 stars observed with NASA's Kepler mission are analyzed using the autoregressive planet search (ARPS) methodology described by Caceres et al. (2019AJ....158...57C). The three stages of processing are maximum-likelihood ARIMA modeling of the light curves to reduce stellar brightness variations, constructing the transit comb filter periodogram to identify transit-like periodic dips in the ARIMA residuals, and Random Forest classification trained on Kepler team confirmed planets using several dozen features from the analysis. Orbital periods between 0.2 and 100 days are examined. The result is a recovery of 76% of confirmed planets, 97% when period and transit depth constraints are added. The classifier is then applied to the full Kepler data set; 1004 previously noticed and 97 new stars have light-curve criteria consistent with the confirmed planets, after subjective vetting removes clear false alarms and false positive cases. The 97 Kepler ARPS candidate transits mostly have periods of P<10 days; many are ultrashort period hot planets with radii <1% of the host star. Extensive tabular and graphical output from the ARPS time series analysis is provided to assist in other research relating to the Kepler sample.
- ID:
- ivo://CDS.VizieR/J/AJ/158/59
- Title:
- Autoregressive planet search: irregular time series
- Short Name:
- J/AJ/158/59
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Sensitive signal processing methods are needed to detect transiting planets from ground-based photometric surveys. Caceres et al. (2019AJ....158...58C) show that the autoregressive planet search (ARPS) method - a combination of autoregressive integrated moving average (ARIMA) parametric modeling, a new transit comb filter (TCF) periodogram, and machine learning classification - is effective when applied to evenly spaced light curves from space-based missions. We investigate here whether ARIMA and TCF will be effective for ground-based survey light curves that are often sparsely sampled with high noise levels from atmospheric and instrumental conditions. The ARPS procedure is applied to selected light curves with strong planetary signals from the Kepler mission that have been altered to simulate the conditions of ground-based exoplanet surveys. Typical irregular cadence patterns are used from the Hungarian-made Automated Telescope Network-South (HATSouth) survey. We also evaluate recovery of known planets from HATSouth. Simulations test transit signal recovery as a function of cadence pattern and duration, stellar magnitude, planet orbital period, and transit depth. Detection rates improve for shorter periods and deeper transits. The study predicts that the ARPS methodology will detect planets with >~0.1% transit depth and periods ~<40 days in HATSouth stars brighter than ~15 mag. ARPS methodology is therefore promising for planet discovery from ground-based exoplanet surveys with sufficiently dense cadence patterns.