The "Spitzer Extragalactic Representative Volume Survey" (SERVS) Exploration Science program conducted deep IRAC 3.6 and 4.5 micron observations of five extragalactic fields (ELAIS-N1, Lockman Hole, XMM, ELAIS-S1, and CDFS).
The 2-band high reliability catalogs are matched [3.6] and [4.5] catalogs, with the low coverage areas near the edges of the survey omitted (POLY_12=1). These catalogs should be used if you are using SERVS to select your sample, as objects in this catalog should be highly reliable (>99.9%). To appear in the catalog objects must appear in both bands, and the detection in one band must be > 10-sigma in CSNR, where CSNR is the coverage-weighted signal-to-noise ratio.
The "Spitzer Extragalactic Representative Volume Survey" (SERVS) Exploration Science program conducted deep IRAC 3.6 and 4.5 micron observations of five extragalactic fields (ELAIS-N1, Lockman Hole, XMM, ELAIS-S1, and CDFS).
Objects in the single band catalogs are not required to have any counterparts in the other band. They are cut at CSNR > 5 and also have the low coverage areas at the edges of the survey omitted (POLY=1), resulting in a single-band reliability flag REL=1. They are thus deeper than the 2-band high reliability catalogs. These should be used if you are matching with a reliable catalog from another band (e.g. near-infrared), and simply want as many matches as possible, or are doing a statistical study.
The "Spitzer Extragalactic Representative Volume Survey" (SERVS) Exploration Science program conducted deep IRAC 3.6 and 4.5 micron observations of five extragalactic fields (ELAIS-N1, Lockman Hole, XMM, ELAIS-S1, and CDFS).
Objects in the single band catalogs are not required to have any counterparts in the other band. They are cut at CSNR > 5 and also have the low coverage areas at the edges of the survey omitted (POLY=1), resulting in a single-band reliability flag REL=1. They are thus deeper than the 2-band high reliability catalogs. These should be used if you are matching with a reliable catalog from another band (e.g. near-infrared), and simply want as many matches as possible, or are doing a statistical study.
The "Spitzer Extragalactic Representative Volume Survey" (SERVS) Exploration Science program conducted deep IRAC 3.6 and 4.5 micron observations of five extragalactic fields (ELAIS-N1, Lockman Hole, XMM, ELAIS-S1, and CDFS).
Objects in the single band catalogs are not required to have any counterparts in the other band. They are cut at CSNR > 5 and also have the low coverage areas at the edges of the survey omitted (POLY=1), resulting in a single-band reliability flag REL=1. They are thus deeper than the 2-band high reliability catalogs. These should be used if you are matching with a reliable catalog from another band (e.g. near-infrared), and simply want as many matches as possible, or are doing a statistical study.
The "Spitzer Extragalactic Representative Volume Survey" (SERVS) Exploration Science program conducted deep IRAC 3.6 and 4.5 micron observations of five extragalactic fields (ELAIS-N1, Lockman Hole, XMM, ELAIS-S1, and CDFS).
Objects in the single band catalogs are not required to have any counterparts in the other band. They are cut at CSNR > 5 and also have the low coverage areas at the edges of the survey omitted (POLY=1), resulting in a single-band reliability flag REL=1. They are thus deeper than the 2-band high reliability catalogs. These should be used if you are matching with a reliable catalog from another band (e.g. near-infrared), and simply want as many matches as possible, or are doing a statistical study.
The "Spitzer Extragalactic Representative Volume Survey" (SERVS) Exploration Science program conducted deep IRAC 3.6 and 4.5 micron observations of five extragalactic fields (ELAIS-N1, Lockman Hole, XMM, ELAIS-S1, and CDFS).
Objects in the single band catalogs are not required to have any counterparts in the other band. They are cut at CSNR > 5 and also have the low coverage areas at the edges of the survey omitted (POLY=1), resulting in a single-band reliability flag REL=1. They are thus deeper than the 2-band high reliability catalogs. These should be used if you are matching with a reliable catalog from another band (e.g. near-infrared), and simply want as many matches as possible, or are doing a statistical study.
The "Spitzer Extragalactic Representative Volume Survey" (SERVS) Exploration Science program conducted deep IRAC 3.6 and 4.5 micron observations of five extragalactic fields (ELAIS-N1, Lockman Hole, XMM, ELAIS-S1, and CDFS).
Objects in the single band catalogs are not required to have any counterparts in the other band. They are cut at CSNR > 5 and also have the low coverage areas at the edges of the survey omitted (POLY=1), resulting in a single-band reliability flag REL=1. They are thus deeper than the 2-band high reliability catalogs. These should be used if you are matching with a reliable catalog from another band (e.g. near-infrared), and simply want as many matches as possible, or are doing a statistical study.
The "Spitzer Extragalactic Representative Volume Survey" (SERVS) Exploration Science program conducted deep IRAC 3.6 and 4.5 micron observations of five extragalactic fields (ELAIS-N1, Lockman Hole, XMM, ELAIS-S1, and CDFS).
Objects in the single band catalogs are not required to have any counterparts in the other band. They are cut at CSNR > 5 and also have the low coverage areas at the edges of the survey omitted (POLY=1), resulting in a single-band reliability flag REL=1. They are thus deeper than the 2-band high reliability catalogs. These should be used if you are matching with a reliable catalog from another band (e.g. near-infrared), and simply want as many matches as possible, or are doing a statistical study.
The "Spitzer Extragalactic Representative Volume Survey" (SERVS) Exploration Science program conducted deep IRAC 3.6 and 4.5 micron observations of five extragalactic fields (ELAIS-N1, Lockman Hole, XMM, ELAIS-S1, and CDFS).
Objects in the single band catalogs are not required to have any counterparts in the other band. They are cut at CSNR > 5 and also have the low coverage areas at the edges of the survey omitted (POLY=1), resulting in a single-band reliability flag REL=1. They are thus deeper than the 2-band high reliability catalogs. These should be used if you are matching with a reliable catalog from another band (e.g. near-infrared), and simply want as many matches as possible, or are doing a statistical study.
The Enhanced Products consist of two elements:
(1) A collection of 16,986 low-resolution, merged spectra
(2) A Catalog of extracted source positions, synthetic photometry in several bands, PSF profile widths, and other useful quantities.
These products were produced starting with the final SSC pipeline (ver. 18.18) bksub.tbl SL and LL spectra. The bksub.tbl spectra were extracted from the nod two minus nod one and nod one minus nod two background-subtracted basic calibrated data, using an aperture that expands linearly with wavelength. The calibrated fluxes are consequently strictly valid only for point sources.